Skip to main content
Version: 14

viktor.external.scia

CalcSetting

class viktor.external.scia.scia.CalcSetting(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

Enumeration of calculation settings:

NONE: CalcSetting = 'NONE'
NOC: CalcSetting = 'NOC'
LIN: CalcSetting = 'LIN'
NEL: CalcSetting = 'NEL'
EIG: CalcSetting = 'EIG'
STB: CalcSetting = 'STB'
INF: CalcSetting = 'INF'
MOB: CalcSetting = 'MOB'
TDA: CalcSetting = 'TDA'
SLN: CalcSetting = 'SLN'
PHA: CalcSetting = 'PHA'
NPH: CalcSetting = 'NPH'
CSS: CalcSetting = 'CSS'
NST: CalcSetting = 'NST'
TID: CalcSetting = 'TID'

ResultType

class viktor.external.scia.scia.ResultType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

Enumeration of result types:

NONE: ResultType = 'XML'
MODEL: ResultType = 'MODEL'
ENGINEERING_REPORT: ResultType = 'ENGINEERING_REPORT'

SciaAnalysis

class viktor.external.scia.scia.SciaAnalysis(input_file, xml_def_file, scia_model, calculation_setting=CalcSetting.LIN, xml_doc_name='output', *, result_type=ResultType.MODEL, output_document='')

Bases: ExternalProgram

SciaAnalysis can be used to perform an analysis using SCIA on a third-party worker. To start an analysis call the method execute(), with an appropriate timeout (in seconds). To retrieve the output file call the method get_xml_output_file() after execute().

Usage:

input_file = BytesIO("scia input file content".encode())
xml_def_file = BytesIO("scia xml def file content".encode())
scia_model = BytesIO("scia model content".encode())
scia_analysis = SciaAnalysis(input_file=input_file, xml_def_file=xml_def_file, scia_model=scia_model)
scia_analysis.execute(timeout=600)
xml_output_file = scia_analysis.get_xml_output_file()

Besides the output XML file, you can also retrieve the updated SCIA model. This is achieved using the result_type:

scia_analysis = SciaAnalysis(input_file=input_file, xml_def_file=xml_def_file, scia_model=scia_model,
                             result_type=ResultType.MODEL)
scia_analysis.execute(timeout=600)
updated_esa_file = scia_analysis.get_updated_esa_model()

or the Engineering Report:

scia_analysis = SciaAnalysis(input_file=input_file, xml_def_file=xml_def_file, scia_model=scia_model,
                             result_type=ResultType.ENGINEERING_REPORT, output_document='report1')
scia_analysis.execute(timeout=600)
engineering_report = scia_analysis.get_engineering_report()

Exceptions which can be raised during calculation:

Parameters:
  • input_file (Union[BytesIO, File]) – SCIA input .xml file.

  • xml_def_file (Union[BytesIO, File]) – SCIA input .def file.

  • scia_model (Union[BytesIO, File]) – SCIA .esa model.

  • calculation_setting (CalcSetting) –

    Available calculation settings according to the documentation of ESA_XML.exe:

    • NONE = without any recalculations

    • NOC = No calculation

    • LIN = Linear calculation (Delete all calculated results when exists)

    • NEL = Nonlinear calculation

    • CON = Nonlinear concrete calculation

    • EIG = Eigen frequencies calculation

    • STB = Stability calculation

    • INF = Influence lines calculation

    • MOB = Mobile loads calculation

    • TDA = TDA calculation

    • SLN = Soilin calculation

    • PHA = Phases calculation

    • NPH = Nonlinear phases

    • CSS = Recalculation of cross sections

    • NST = Nonlinear stability

    • TID = Test of input data - solver link only

  • xml_doc_name (str) – Name of XML IO document for export.

  • result_type (ResultType) –

    Type of output which should be returned besides the output.xml:

    • ResultType.NONE returns nothing

    • ResultType.MODEL returns the updated SCIA model (.esa) after calculation

    • ResultType.ENGINEERING_REPORT returns the specified engineering report

  • output_document (str) – Document name of the report which should be returned. This name should match the exact name of the report as defined in the .esa model.

Raises:

ValueError – if Engineering Report is selected as result_type, but no output_document is specified.

static get_xml_def_name(input_file)
Return type:

str

get_xml_output_file(as_file=False)

Method can be used to retrieve the results generated by running an external analysis. This method returns the output XML file that is generated by SCIA. Make sure to call method execute() first and get_xml_output_file() afterwards.

Return type:

Union[BytesIO, File, None]

Returns:

  • File, if as_file = True

  • BytesIO, if as_file = False (default)

get_updated_esa_model(as_file=False)

Method can be used to retrieve the updated SCIA model file (.esa), which contains the data that is read into the model while calling ESA_XML.exe. Make sure to call method execute() first and get_updated_esa_model() afterwards.

Return type:

Union[BytesIO, File, None]

Returns:

  • File, if as_file = True

  • BytesIO, if as_file = False (default)

get_engineering_report(as_file=False)

Method can be used to retrieve the Engineering Report (.pdf). Make sure to call method execute() first and get_engineering_report() afterwards.

Return type:

Union[BytesIO, File, None]

Returns:

  • File, if as_file = True

  • BytesIO, if as_file = False (default)

Model

class viktor.external.scia.scia.Model(*, mesh_setup=None, solver_setup=None, project_data=None)

This Model can be used to construct a SCIA model and generate its corresponding input XML file. This file can in turn be used as input of SciaAnalysis. For a more detailed elaboration, please see the tutorial.

Example usage:

# Initialize the model
model = Model()

# Construct the geometry
n1 = model.create_node('K:1', 0, 0, 0)
n2 = model.create_node('K:2', 1, 0, 0)
css = model.create_circular_cross_section('css', Material(123, 'some_material'), 100)
beam = model.create_beam(n1, n2, css)

#Construct the boundary conditions
freedom = (PointSupport.Freedom.RIGID, PointSupport.Freedom.RIGID, PointSupport.Freedom.RIGID,
    PointSupport.Freedom.RIGID, PointSupport.Freedom.RIGID, PointSupport.Freedom.RIGID)
model.create_point_support('Sn1', n1, PointSupport.Type.STANDARD, freedom, (0, 0, 0, 0, 0, 0),
    PointSupport.CSys.GLOBAL)

# Construct a load combination
load_group = model.create_load_group('LG1', LoadGroup.LoadOption.VARIABLE, LoadGroup.RelationOption.STANDARD,
    LoadGroup.LoadTypeOption.CAT_A)
load_case = model.create_variable_load_case('LC1', 'My first load case', load_group,
    LoadCase.VariableLoadType.STATIC, LoadCase.Specification.STANDARD, LoadCase.Duration.SHORT)
model.create_load_combination('C1', LoadCombination.Type.ENVELOPE_ULTIMATE, {load_case: 1})

# Generate the input XML file
input_xml = model.generate_xml_input()
Parameters:
  • mesh_setup (MeshSetup) – Optional mesh settings.

  • solver_setup (SolverSetup) – Optional solver settings

    New in v13.1.0
    .

  • project_data (ProjectData) – Optional project settings

    New in v13.1.0
    .

property layers: Tuple[Layer, ...]
property concrete_materials: Tuple[Concrete, ...]
property nonlinear_functions: Tuple[NonLinearFunction, ...]
property subsoils: Tuple[Subsoil, ...]
property orthotropy_objects: Tuple[Orthotropy, ...]
property selections: Tuple[Selection, ...]
property cross_sections: Tuple[CrossSection, ...]
property nodes: Tuple[Node, ...]
property beams: Tuple[Beam, ...]

New in v13.1.0

property arbitrary_profiles: Tuple[ArbitraryProfile, ...]
property hinges_on_beam: Tuple[HingeOnBeam, ...]
property hinges_on_plane: Tuple[HingeOnPlane, ...]
property sections_on_beam: Tuple[SectionOnBeam, ...]
property sections_on_plane: Tuple[SectionOnPlane, ...]
property planes: Tuple[Plane, ...]
property open_slabs: Tuple[OpenSlab, ...]
property internal_edges: Tuple[InternalEdge, ...]
property rigid_arms: Tuple[RigidArm, ...]
property point_supports: Tuple[PointSupport, ...]
property point_supports_line: Tuple[PointSupportLine, ...]
property line_supports_line: Tuple[LineSupportLine, ...]
property line_supports_surface: Tuple[LineSupportSurface, ...]
property surface_supports: Tuple[SurfaceSupportSurface, ...]
property load_cases: Tuple[LoadCase, ...]
property load_groups: Tuple[LoadGroup, ...]
property load_combinations: Tuple[LoadCombination, ...]
property nonlinear_load_combinations: Tuple[NonLinearLoadCombination, ...]
property result_classes: Tuple[ResultClass, ...]
property point_loads_node: Tuple[PointLoadNode, ...]
property point_loads: Tuple[PointLoad, ...]
property point_moments_node: Tuple[PointMomentNode, ...]
property line_loads: Tuple[LineLoad, ...]
property line_moments_on_beam: Tuple[LineMomentOnBeam, ...]
property line_moments_on_plane: Tuple[LineMomentOnPlane, ...]
property line_force_surface_list: Tuple[LineForceSurface, ...]
property surface_loads: Tuple[SurfaceLoad, ...]
property thermal_loads: Tuple[ThermalLoad, ...]
property thermal_surface_loads: Tuple[ThermalSurfaceLoad, ...]
property free_surface_loads: Tuple[FreeSurfaceLoad, ...]
property free_line_loads: Tuple[FreeLineLoad, ...]
property free_point_loads: Tuple[FreePointLoad, ...]
property integration_strips: Tuple[IntegrationStrip, ...]
property averaging_strips: Tuple[AveragingStrip, ...]
property mesh_setup: MeshSetup
property solver_setup: SolverSetup

New in v13.1.0

property project_data: ProjectData

New in v13.1.0

create_layer(name=None, *, comment=None, structural_model_only=None, current_used_activity=None)

Method to construct a layer.

Duplicate layer names are not allowed.

Parameters:
  • name (str) – name of the layer (default: ‘Layer{i}’)

  • comment (str) – optional comment

  • structural_model_only (bool) – when ‘True’, the layer is NOT taken into account for the calculation (default: False)

  • current_used_activity (bool) – defines if the layer is visible or not on the screen (default: True)

Return type:

Layer

update_concrete_material(object_id, name, part, thermal_expansion=None, unit_mass=None, wet_density=None, e_modulus=None, poisson=None, g_modulus=None, log_decrement=None, specific_heat=None, thermal_conductivity=None, *, fck=None)

This method can update specific properties of an already existing concrete material in the *.esa model.

Parameters:
  • object_id (int) – id of the material in SCIA

  • name (str) – name which will be shown in SCIA

  • part (ECPart) – enumeration of concrete types

  • thermal_expansion (float) – thermal expansion in [m/mK]

  • unit_mass (float) – density in [kg/m3]

  • wet_density (float) – wet density in [kg/m3]

  • e_modulus (float) – Young’s modulus in [Pa]

  • poisson (float) – Poisson ratio

  • g_modulus (float) – shear modulus in [Pa]

  • log_decrement (float) – log. decrement

  • specific_heat (float) – specific heat in [J/kgK]

  • thermal_conductivity (float) – thermal conductivity in [W/mK]

  • fck (float) – characteristic compressive cylinder strength [Pa]

Return type:

Concrete

create_nonlinear_function(name, function_type, positive_end, negative_end, impulse)

Method to construct a non-linear function.

Parameters:
  • name (str) – name of the function

  • function_type (Type) – type of function

  • positive_end (Support) – type of support at positive end

  • negative_end (Support) – type of support at negative end

  • impulse (List[Tuple[float, float]]) – impulse function X-Y values in [m, N] (if function_type = TRANSLATION), [rad, Nm] (if function_type = ROTATION), or [m, Pa] (if function_type = NONLINEAR_SUBSOIL)

Return type:

NonLinearFunction

create_subsoil(name, *, stiffness, c1x=None, c1y=None, c1z=None, nonlinear_function=None, c2x=None, c2y=None, is_drained=None, water_air_in_clay_subgrade=None, specific_weight=None, fi=None, sigma_oc=None, c=None, cu=None)

Method to construct a subsoil.

Parameters:
  • name (str) – name of the subsoil

  • stiffness (float) – stiffness c1z [N/m3]

  • c1x (float) – stiffness c1x [N/m3] (default: 50000000)

  • c1y (float) – stiffness c1y [N/m3] (default: 50000000)

  • c1z (C1z) – type for c1z (default: FLEXIBLE)

  • nonlinear_function (NonLinearFunction) – nonlinear function (create_nonlinear_function()) (c1z = NONLINEAR_FUNCTION only)

  • c2x (float) – [N/m]

  • c2y (float) – [N/m]

  • is_drained (bool) – True for ‘drained’, False for ‘undrained’ (default: False)

  • water_air_in_clay_subgrade (bool) – (default: False)

  • specific_weight (float) – specific weight [kg/m3] (default: 0.0)

  • fi (float) – fi’ [deg] (default: 0.0)

  • sigma_oc (float) – sigma oc [Pa] (default: 0.0)

  • c (float) – c’ [Pa] (default: 0.0)

  • cu (float) – [Pa] (default: 0.0)

Return type:

Subsoil

create_orthotropy(name, material, thickness, D11=None, D22=None, D12=None, D33=None, D44=None, D55=None, d11=None, d22=None, d12=None, d33=None, kxy=None, kyx=None)

Method to construct a type of orthotropy.

Parameters:
  • name (str) – name of the orthotropy

  • material (Material) – material

  • thickness (float) – thickness of the plate / wall [m]

  • D11 (float) – (plate) stiffness matrix parameter [Nm]

  • D22 (float) – (plate) stiffness matrix parameter [Nm]

  • D12 (float) – (plate) stiffness matrix parameter [Nm]

  • D33 (float) – (plate) stiffness matrix parameter [Nm]

  • D44 (float) – (plate) stiffness matrix parameter [N/m]

  • D55 (float) – (plate) stiffness matrix parameter [N/m]

  • d11 (float) – (membrane) stiffness matrix parameter [N/m]

  • d22 (float) – (membrane) stiffness matrix parameter [N/m]

  • d12 (float) – (membrane) stiffness matrix parameter [N/m]

  • d33 (float) – (membrane) stiffness matrix parameter [N/m]

  • kxy (float) – stiffness coefficient [N/m]

  • kyx (float) – stiffness coefficient [N/m]

Return type:

Orthotropy

create_selection(name, objects)

New in v14.1.0

Method to construct a named selection.

Parameters:
  • name (str) – name which will be shown in SCIA

  • objects (List[SciaObject]) – object(s) created within this model

Return type:

Selection

create_arbitrary_profile_span(length, type_of_css, cross_section_start, cross_section_end, alignment)

Method to construct an arbitrary profile span, which is necessary to construct an arbitrary profile.

Parameters:
  • length (float) – length of the span

  • type_of_css (TypeOfCss) – enumeration of cross-section types

  • cross_section_start (CrossSection) – previously created cross-section object at the start point

  • cross_section_end (CrossSection) – previously created cross-section object at the end point

  • alignment (Alignment) – enumeration of alignment types

Return type:

ArbitraryProfileSpan

create_rectangular_cross_section(name, material, width, height)

Method to construct a rectangular cross-section.

Parameters:
  • name (str) – name which will be shown in SCIA

  • material (Material) – material of the cross-section

  • width (float) – width of the cross-section in [m]

  • height (float) – height of the cross-section in [m]

Return type:

RectangularCrossSection

create_circular_cross_section(name, material, diameter)

Method to construct a circular cross-section.

Parameters:
  • name (str) – name which will be shown in SCIA

  • material (Material) – material of the cross-section

  • diameter (float) – diameter of the cross-section in [m]

Return type:

CircularCrossSection

create_circular_hollow_cross_section(name, material, diameter, thickness)

Method to construct a circular hollow cross-section.

Parameters:
  • name (str) – name which will be shown in SCIA

  • material (Material) – material of the cross-section

  • diameter (float) – diameter of the cross-section in [m]

  • thickness (float) – thickness in [m]

Return type:

CircularHollowCrossSection

create_circular_composed_cross_section(name, material, material_2, diameter, thickness)

Method to construct a circular cross-section, composed of two materials.

Parameters:
  • name (str) – name which will be shown in SCIA

  • material (Material) – outer material of the cross-section

  • material_2 (Material) – inner material of the cross-section

  • diameter (float) – diameter of the cross-section in [m]

  • thickness (float) – thickness in [m]

Return type:

CircularComposedCrossSection

create_numerical_cross_section(name, material, *, A=None, Ay=None, Az=None, AL=None, AD=None, cYUCS=None, cZUCS=None, alpha=None, Iy=None, Iz=None, Wely=None, Welz=None, Wply=None, Wplz=None, Mply_plus=None, Mply_min=None, Mplz_plus=None, Mplz_min=None, dy=None, dz=None, It=None, Iw=None, beta_y=None, beta_z=None)

Method to construct a numerical cross-section.

Parameters:
  • name (str) – name which will be shown in SCIA

  • material (Material) – material of the cross-section

  • A (float) – cross-sectional area [m²]

  • Ay (float) – shear area in y-direction [m²]

  • Az (float) – shear area in z-direction [m²]

  • AL (float) – circumference per unit length [m²/m]

  • AD (float) – drying surface per unit length [m²/m]

  • cYUCS (float) – centroid in y-direction of input axis system [mm]

  • cZUCS (float) – centroid in z-direction of input axis system [mm]

  • alpha (float) – rotation angle of axis system [deg]

  • Iy (float) – moment of inertia about the y-axis [m⁴]

  • Iz (float) – moment of inertia about the z-axis [m⁴]

  • Wely (float) – elastic section modulus about the y-axis [m³]

  • Welz (float) – elastic section modulus about the z-axis [m³]

  • Wply (float) – plastic section modulus about the y-axis [m³]

  • Wplz (float) – plastic section modulus about the z-axis [m³]

  • Mply_plus (float) – plastic moment about the y-axis for positive My moment [Nm]

  • Mply_min (float) – plastic moment about the y-axis for negative My moment [Nm]

  • Mplz_plus (float) – plastic moment about the z-axis for positive My moment [Nm]

  • Mplz_min (float) – plastic moment about the z-axis for negative My moment [Nm]

  • dy (float) – shear center coordinate in y-axis, measured from centroid [mm]

  • dz (float) – shear center coordinate in z-axis, measured from centroid [mm]

  • It (float) – torsional constant [m⁴]

  • Iw (float) – warping constant [m⁶]

  • beta_y (float) – mono-symmetry constant about the y-axis [mm]

  • beta_z (float) – mono-symmetry constant about the z-axis [mm]

Return type:

NumericalCrossSection

create_library_cross_section(section, profile, material, *, name=None)

New in v13.1.0

Method to construct a cross-section that is part of the cross-section library.

Parameters:
  • section (Section) – section type (e.g. LibraryCrossSection.Section.I)

  • profile (str) – profile name including dimensions (e.g. “SHS30/30/2.0”)

  • material (Material) – material of the cross-section

  • name (str) – name of the cross-section (default: ‘CS{i}’)

Return type:

LibraryCrossSection

create_general_cross_section_element(name, element_type, points, *, material=None)

New in v14.7.0

Construct a general cross-section element, which is necessary to construct a general cross-section.

Parameters:
  • name (str) – name of the element

  • element_type (Type) – element type

  • points (Sequence[Tuple[float, float]]) – outline of the element

  • material (Material) – material of the element

Return type:

GeneralCrossSectionElement

create_general_cross_section(elements, *, name=None)

New in v14.7.0

Construct a general cross-section.

Parameters:
  • name (str) – name of the cross-section (default: ‘CS{i}’)

  • elements (Sequence[GeneralCrossSectionElement]) – elements (polygon + openings) that build up the cross-section

Return type:

GeneralCrossSection

create_node(name, x, y, z)

Method to construct a node.

Parameters:
  • name (str) – name which will be shown in SCIA

  • x (float) – X-coordinate in [m]

  • y (float) – Y-coordinate in [m]

  • z (float) – Z-coordinate in [m]

Return type:

Node

create_beam(begin_node, end_node, cross_section, *, name=None, ez=None, lcs_rotation=None, layer=None)

Method to construct a beam.

Parameters:
  • begin_node (Node) – node object (create_node()) at the start of the beam.

  • end_node (Node) – node object (create_node()) at the end of the beam.

  • cross_section (CrossSection) – previously created cross-section object

  • name (str) – name which will be shown in SCIA (default: ‘B{i}’)

  • ez (float) – eccentricity in Z-direction w.r.t. the beam’s center line in [m] (default: 0)

  • lcs_rotation (float) – rotation of local coordinate system [deg] (default: 0)

  • layer (Layer) – layer object (create_layer()) to which the beam will be added

Return type:

Beam

New in v13.1.0

Method to construct a cross-link, connecting two beams.

Parameters:
Return type:

CrossLink

create_arbitrary_profile(name, beam, c_def, cross_section, spans)

Method to construct an arbitrary profile.

Parameters:
Return type:

ArbitraryProfile

create_hinge_on_beam(beam, position, *, name=None, freedom_ux=Freedom.RIGID, freedom_uy=Freedom.RIGID, freedom_uz=Freedom.RIGID, freedom_fix=Freedom.RIGID, freedom_fiy=Freedom.FREE, freedom_fiz=Freedom.RIGID, stiffness_ux=0, stiffness_uy=0, stiffness_uz=0, stiffness_fix=0, stiffness_fiy=0, stiffness_fiz=0)

Create a hinge on a beam.

Parameters:
  • beam (Beam) – Beam of appliance (create_beam()).

  • position (Position) – Position of appliance.

  • name (str) – Name of the hinge (default: ‘H{i}’).

  • freedom_ux (Freedom) – Freedom in ux (default: rigid).

  • freedom_uy (Freedom) – Freedom in uy (default: rigid).

  • freedom_uz (Freedom) – Freedom in uz (default: rigid).

  • freedom_fix (Freedom) – Freedom in fix (default: rigid).

  • freedom_fiy (Freedom) – Freedom in fiy (default: free).

  • freedom_fiz (Freedom) – Freedom in fiz (default: rigid).

  • stiffness_ux (float) – Stiffness in ux [N/m], only used if freedom in ux = flexible (default: 0.0).

  • stiffness_uy (float) – Stiffness in uy [N/m], only used if freedom in uy = flexible (default: 0.0).

  • stiffness_uz (float) – Stiffness in uz [N/m], only used if freedom in uz = flexible (default: 0.0).

  • stiffness_fix (float) – Stiffness in fix [Nm/rad], only used if freedom in fix = flexible (default: 0.0).

  • stiffness_fiy (float) – Stiffness in fiy [Nm/rad], only used if freedom in fiy = flexible (default: 0.0).

  • stiffness_fiz (float) – Stiffness in fiz [Nm/rad], only used if freedom in fiz = flexible (default: 0.0).

Return type:

HingeOnBeam

create_section_on_beam(name, beam, c_def, position_x, origin, repeat, delta_x)

Method to construct a section on a beam, which can be used to receive calculation results on its position.

Parameters:
  • name (str) – name which will be shown in SCIA

  • beam (Beam) – beam object (create_beam()).

  • c_def (CDef) – enumeration of coordinate definition types

  • position_x (float) – position of the section on the beam

  • origin (Origin) – enumeration of origin types

  • repeat (int) – number of section defined at the same time

  • delta_x (float) – if repeat is greater than 1, this value defines the distance between individual sections

Return type:

SectionOnBeam

create_section_on_plane(point_1, point_2, *, name, draw=None, direction_of_cut=None)

Method to construct a section on a plane, which can be used to receive calculation results on its position.

Parameters:
  • point_1 (Tuple[float, float, float]) – tuple of coordinates (x, y, z) of the start position in [m]

  • point_2 (Tuple[float, float, float]) – tuple of coordinates (x, y, z) of the end position in [m]

  • name (str) – name which will be shown in SCIA (default: SE{i})

  • draw (Draw) – defines the plane in which the section is drawn (default: Z_DIRECTION)

  • direction_of_cut (Tuple[float, float, float]) – in-plane vector (x, y, z) which defines the direction of cut in [m] (default: (0, 0, 1))

Return type:

SectionOnPlane

create_rigid_arm(name, master_node, slave_node, hinge_on_master, hinge_on_slave)

Method to construct a rigid arm.

Parameters:
  • name (str) – name which will be shown in SCIA

  • master_node (Node) – node object (create_node()).

  • slave_node (Node) – node object (create_node()).

  • hinge_on_master (bool) – True to insert a hinge on the master node

  • hinge_on_slave (bool) – True to insert a hinge on the slave node

Return type:

RigidArm

create_plane(corner_nodes, thickness, *, material, name=None, plane_type=None, layer=None, internal_nodes=None, swap_orientation=None, lcs_rotation=None, fem_model=None, orthotropy=None)

Method to construct a 2D member.

Parameters:
  • corner_nodes (List[Node]) – list of node objects located at the corners

  • thickness (float) – thickness of the plane in [m]

  • material (Material) – Material of the plane

  • name (str) – name which will be shown in SCIA (default: ‘S{i}’)

  • plane_type (Type) – enumeration of plane types (default: PLATE)

  • layer (Layer) – layer object (create_layer()) to which the plane will be added

  • internal_nodes (List[Node]) – list of internal node objects (default: None)

  • swap_orientation (bool) – whereas to swap the plate orientation (default: False)

  • lcs_rotation (float) – rotation of the local coordinate system [deg] (default: 0.0)

  • fem_model (FEMModel) – FEM model to be used in the calculation (default: isotropic)

  • orthotropy (Orthotropy) – type of orthotropy (only for fem_model = ORTHOTROPIC)

Return type:

Plane

create_circular_plane(center_node, diameter, thickness, *, material, axis=None, name=None, plane_type=None, layer=None, internal_nodes=None, swap_orientation=None, lcs_rotation=None, fem_model=None, orthotropy=None)

Method to construct a circular 2D member.

Parameters:
  • center_node (Node) – node object (create_node()) located at the center of the plane

  • diameter (float) – diameter of the plane [m]

  • thickness (float) – thickness of the plane [m]

  • material (Material) – Material of the plane

  • axis (Union[Vector, Tuple[float, float, float]]) – axis direction (default: (0, 0, 1))

  • name (str) – name which will be shown in SCIA (default: ‘S{i}’)

  • plane_type (Type) – enumeration of plane types (default: PLATE)

  • layer (Layer) – layer object (create_layer()) to which the plane will be added

  • internal_nodes (List[Node]) – list of internal node objects (default: None)

  • swap_orientation (bool) – whereas to swap the plate orientation (default: False)

  • lcs_rotation (float) – rotation of the local coordinate system [deg] (default: 0.0)

  • fem_model (FEMModel) – FEM model to be used in the calculation (default: isotropic)

  • orthotropy (Orthotropy) – type of orthotropy (only for fem_model = ORTHOTROPIC)

Return type:

Plane

create_open_slab(name, plane, corner_nodes)

Method to construct an open slab in a 2D member.

Parameters:
  • name (str) – name which will be shown in SCIA

  • plane (Plane) – plane object (create_plane()).

  • corner_nodes (List[Node]) – list of node objects located at the corners

Return type:

OpenSlab

create_internal_edge(plane, node_1, node_2, *, name=None)

Method to construct an internal edge in a 2D member.

Parameters:
Return type:

InternalEdge

create_integration_strip(plane, point_1, point_2, width)

Method to construct an integration strip, which can be used to receive calculation results on its position.

Parameters:
  • plane (Plane) – plane object (create_plane()).

  • point_1 (Tuple[float, float, float]) – tuple of coordinates (x, y, z) of the start position in [m]

  • point_2 (Tuple[float, float, float]) – tuple of coordinates (x, y, z) of the end position in [m]

  • width (float) – width of the strip in [m]

Return type:

IntegrationStrip

create_averaging_strip(plane, *, strip_type, point_1, width, length, angle, direction, name=None)

New in v14.3.0

Method to construct an averaging strip, which can be used for the automatic averaging of peak results.

Parameters:
  • plane (Plane) – plane object (create_plane()).

  • strip_type (Type) – Currently only Point type is supported

  • point_1 (Tuple[float, float, float]) – tuple of coordinates (x, y, z) of the center position in [m]

  • width (float) – width of the strip in [m]

  • length (float) – length of the strip in [m]

  • angle (float) – defines the direction of the strip [deg]

  • direction (Direction) – direction in which the averaging is to be calculated

  • name (str) – name which will be shown in SCIA (default: ‘RS{i}’)

Return type:

AveragingStrip

create_point_support(name, node, spring_type, freedom, stiffness, c_sys, default_size=0.2, *, angle=None)

Method to construct a point support.

Parameters:
  • name (str) – name which will be shown in SCIA

  • node (Node) – node object (create_node()) to which the support will be attached.

  • spring_type (Type) – enumeration of spring types

  • freedom (Tuple[Freedom, Freedom, Freedom, Freedom, Freedom, Freedom]) – tuple of component constraints in the order (X, Y, Z, Rx, Ry, Rz)

  • stiffness (Tuple[float, float, float, float, float, float]) – tuple of component stiffness in the order (X, Y, Z, Rx, Ry, Rz) in [N/m]

  • c_sys (CSys) – enumeration of coordinate system types

  • default_size (float) – default size in [m]

  • angle (Tuple[float, float, float]) – angle (Rx, Ry, Rz) [deg] of the support around the respective global X-, Y- and Z-axis

Return type:

PointSupport

create_point_support_on_beam(beam, *, name=None, x=None, stiffness_x=None, y=None, stiffness_y=None, z=None, stiffness_z=None, rx=None, stiffness_rx=None, ry=None, stiffness_ry=None, rz=None, stiffness_rz=None, default_size=None, c_sys=None, c_def=None, position_x=None, origin=None, repeat=None, delta_x=None)

Method to construct a point support on a beam.

Parameters:
  • beam (Beam) – beam object (create_beam()) to which the line support will be applied

  • name (str) – name which will be shown in SCIA (default: ‘Sb{i}’)

  • x (Freedom) – constraint type in X-direction (default: RIGID)

  • stiffness_x (float) – stiffness in X-direction [N/m] (only for x = FLEXIBLE)

  • y (Freedom) – constraint type in Y-direction (default: RIGID)

  • stiffness_y (float) – stiffness in Y-direction [N/m] (only for y = FLEXIBLE)

  • z (Freedom) – constraint type in Z-direction (default: RIGID)

  • stiffness_z (float) – stiffness in Z-direction [N/m] (only for z = FLEXIBLE)

  • rx (Freedom) – constraint type in X-rotation (default: RIGID)

  • stiffness_rx (float) – stiffness in X-rotation [Nm/rad] (only for rx = FLEXIBLE)

  • ry (Freedom) – constraint type in Y-rotation (default: RIGID)

  • stiffness_ry (float) – stiffness in Y-rotation [Nm/rad] (only for ry = FLEXIBLE)

  • rz (Freedom) – constraint type in Z-rotation (default: RIGID)

  • stiffness_rz (float) – stiffness in Z-rotation [Nm/rad] (only for rz = FLEXIBLE)

  • default_size (float) – size of the support [m] (default: 0.2)

  • c_sys (CSys) – coordinate system (default: GLOBAL)

  • c_def (CDef) – c_def: coordinate definition (default: RELATIVE)

  • position_x (float) – position of the load ([m] if c_def = ABSOLUTE, else [-]) (default: 0)

  • origin (Origin) – reference for position_x (default: FROM_START)

  • repeat (int) – number of uniformly distributed supports (default: 1)

  • delta_x (float) – distance between supports ([m] if c_def = ABSOLUTE, else [-]) (only for repeat > 1)

Return type:

PointSupportLine

create_line_support_on_beam(beam, *, name=None, x=None, stiffness_x=None, function_x=None, y=None, stiffness_y=None, function_y=None, z=None, stiffness_z=None, function_z=None, rx=None, stiffness_rx=None, function_rx=None, ry=None, stiffness_ry=None, function_ry=None, rz=None, stiffness_rz=None, function_rz=None, c_sys=None, extent=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Method to construct a line support on a beam.

Parameters:
  • beam (Beam) – beam object (create_beam()) to which the line support will be applied

  • name (str) – name which will be shown in SCIA (default: ‘Slb{i}’)

  • x (Freedom) – constraint type in X-direction (default: RIGID)

  • stiffness_x (float) – stiffness in X-direction [N/m2] (only for x = FLEXIBLE | FLEXIBLE_PRESS_ONLY | FLEXIBLE_TENSION_ONLY | NONLINEAR)

  • function_x (NonLinearFunction) – non-linear function in X-direction (only for x = NONLINEAR)

  • y (Freedom) – constraint type in Y-direction (default: RIGID)

  • stiffness_y (float) – stiffness in Y-direction [N/m2] (only for y = FLEXIBLE | FLEXIBLE_PRESS_ONLY | FLEXIBLE_TENSION_ONLY | NONLINEAR)

  • function_y (NonLinearFunction) – non-linear function in Y-direction (only for y = NONLINEAR)

  • z (Freedom) – constraint type in Z-direction (default: RIGID)

  • stiffness_z (float) – stiffness in Z-direction [N/m2] (only for z = FLEXIBLE | FLEXIBLE_PRESS_ONLY | FLEXIBLE_TENSION_ONLY | NONLINEAR)

  • function_z (NonLinearFunction) – non-linear function in Z-direction (only for z = NONLINEAR)

  • rx (Freedom) – constraint type in X-rotation (default: RIGID)

  • stiffness_rx (float) – stiffness in X-rotation [Nm/m/rad] (only for rx = FLEXIBLE | NONLINEAR)

  • function_rx (NonLinearFunction) – non-linear function in X-rotation (only for rx = NONLINEAR)

  • ry (Freedom) – constraint type in Y-rotation (default: RIGID)

  • stiffness_ry (float) – stiffness in Y-rotation [Nm/m/rad] (only for ry = FLEXIBLE | NONLINEAR)

  • function_ry (NonLinearFunction) – non-linear function in Y-rotation (only for ry = NONLINEAR)

  • rz (Freedom) – constraint type in Z-rotation (default: RIGID)

  • stiffness_rz (float) – stiffness in Z-rotation [Nm/m/rad] (only for rz = FLEXIBLE | NONLINEAR)

  • function_rz (NonLinearFunction) – non-linear function in Z-rotation (only for rz = NONLINEAR)

  • c_sys (CSys) – coordinate system (default: LOCAL)

  • extent (Extent) – extension of support (default: FULL)

  • c_def (CDef) – coordinate definition (default: RELATIVE)

  • position_x1 (float) – start of support along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 0.0)

  • position_x2 (float) – end of support along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 1.0)

  • origin (Origin) – reference for position_x1 and position_x2 (default: FROM_START)

Return type:

LineSupportLine

create_line_support_on_plane(edge, *, name=None, x=None, stiffness_x=None, y=None, stiffness_y=None, z=None, stiffness_z=None, rx=None, stiffness_rx=None, ry=None, stiffness_ry=None, rz=None, stiffness_rz=None, c_sys=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Method to construct a line support on a plane edge.

Parameters:
  • edge (Union[Tuple[Plane, int], InternalEdge]) – tuple of the plane object (create_plane()) and edge number to which the load should be applied (1 = between plane.corner_nodes[0] and plane.corner_nodes[1], etc.), or InternalEdge (create_internal_edge())

  • name (str) – name which will be shown in SCIA (default: ‘Sle{i}’)

  • x (Freedom) – constraint type in X-direction (default: FREE)

  • stiffness_x (float) – stiffness in X-direction [N/m2] (only for x = FLEXIBLE)

  • y (Freedom) – constraint type in Y-direction (default: FREE)

  • stiffness_y (float) – stiffness in Y-direction [N/m2] (only for y = FLEXIBLE)

  • z (Freedom) – constraint type in Z-direction (default: FREE)

  • stiffness_z (float) – stiffness in Z-direction [N/m2] (only for z = FLEXIBLE)

  • rx (Freedom) – constraint type in X-rotation (default: FREE)

  • stiffness_rx (float) – stiffness in X-rotation [Nm/m/rad] (only for rx = FLEXIBLE)

  • ry (Freedom) – constraint type in Y-rotation (default: FREE)

  • stiffness_ry (float) – stiffness in Y-rotation [Nm/m/rad] (only for ry = FLEXIBLE)

  • rz (Freedom) – constraint type in Z-rotation (default: FREE)

  • stiffness_rz (float) – stiffness in Z-rotation [Nm/m/rad] (only for rz = FLEXIBLE)

  • c_sys (CSys) – coordinate system (default: GLOBAL)

  • c_def (CDef) – coordinate definition (default: RELATIVE)

  • position_x1 (float) – start of support along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 0.0)

  • position_x2 (float) – end of support along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 1.0)

  • origin (Origin) – reference for position_x1 and position_x2 (default: FROM_START)

Return type:

LineSupportSurface

create_surface_support(plane, subsoil, *, name=None)

Method to construct a surface support.

Parameters:
  • plane (Plane) – plane object (create_plane()) to which the support will be attached

  • subsoil (Subsoil) – subsoil object (create_subsoil()) representing the support

  • name (str) – name which will be shown in SCIA

Return type:

SurfaceSupportSurface

create_hinge_on_plane(edge, *, name=None, ux=None, stiffness_ux=None, uy=None, stiffness_uy=None, uz=None, stiffness_uz=None, fix=None, stiffness_fix=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Method to construct a hinge on a plane edge.

Parameters:
  • edge (Union[Tuple[Plane, int], InternalEdge]) – tuple of a plane object (create_plane()) and edge number to which the hinge will be attached (1 = between plane.corner_nodes[0] and plane.corner_nodes[1], etc.), or InternalEdge (create_internal_edge())

  • name (str) – name which will be shown in SCIA (default: ‘L{i}’)

  • ux (Freedom) – Freedom in ux (default: RIGID).

  • stiffness_ux (float) – Stiffness in ux [N/m2], only used if freedom in ux = flexible (default: 0.0).

  • uy (Freedom) – Freedom in uy (default: RIGID).

  • stiffness_uy (float) – Stiffness in uy [N/m2], only used if freedom in uy = flexible (default: 0.0).

  • uz (Freedom) – Freedom in uz (default: RIGID).

  • stiffness_uz (float) – Stiffness in uz [N/m2], only used if freedom in uz = flexible (default: 0.0).

  • fix (Freedom) – Freedom in fix (default: FREE).

  • stiffness_fix (float) – Stiffness in fix [Nm/m/rad], only used if freedom in fix = flexible (default: 0.0).

  • c_def (CDef) – coordinate definition (default: RELATIVE)

  • position_x1 (float) – position of p1 along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 0.0)

  • position_x2 (float) – position of p2 along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 1.0)

  • origin (Origin) – reference for position_x1 and position_x2 (default: FROM_START)

Return type:

HingeOnPlane

create_load_group(name, load_option, relation=None, load_type=None)

Method to construct a load group.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_option (LoadOption) – enumeration of load option types

  • relation (RelationOption) – enumeration of relation types

  • load_type (LoadTypeOption) – enumeration of load types

Return type:

LoadGroup

create_permanent_load_case(name, description, load_group, load_type, direction=None, primary_effect=None)

Method to construct a permanent load case.

Parameters:
  • name (str) – name which will be shown in SCIA

  • description (str) – description which will be shown in SCIA

  • load_group (LoadGroup) – load group object (create_load_group()) in which the load case should be placed.

  • load_type (PermanentLoadType) – permanent load types

  • direction (Direction) – load direction in case of a SELF_WEIGHT load type (default: NEG_Z)

  • primary_effect (LoadCase) – previously created load case object in case the selected load type is PRIMARY_EFFECT

Return type:

PermanentLoadCase

create_variable_load_case(name, description, load_group, load_type, specification=None, duration=None, primary_effect=None)

Method to construct a variable load case.

Parameters:
  • name (str) – name which will be shown in SCIA

  • description (str) – description which will be shown in SCIA

  • load_group (LoadGroup) – load group object (create_load_group()) in which the load case should be placed.

  • load_type (VariableLoadType) – enumeration of variable load types

  • specification (Specification) – enumeration of specification types

  • duration (Duration) – enumeration of duration types

  • primary_effect (LoadCase) – previously created load case object in case the selected load type is PRIMARY_EFFECT

Return type:

VariableLoadCase

create_load_combination(name, load_type, load_cases, *, description=None)

Method to construct a load combination.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_type (Type) – enumeration of load types

  • load_cases (Dict[LoadCase, float]) – dictionary of previously created load case object(s) with corresponding coefficient

  • description (str) – description of the load combination

    New in v13.1.0

Return type:

LoadCombination

create_nonlinear_load_combination(load_type, load_cases, *, name=None, description=None)

Create a non-linear load combination.

Parameters:
  • load_type (Type) – type of combination

  • load_cases (Dict[LoadCase, float]) – dictionary of previously created load case object(s) with corresponding coefficient

  • name (str) – name which will be shown in SCIA (default: ‘NC{i}’)

  • description (str) – description of the load combination

    New in v13.1.0

Return type:

NonLinearLoadCombination

create_result_class(name, combinations=None, nonlinear_combinations=None)

Method to construct a result class.

Parameters:
Return type:

ResultClass

create_point_load_node(node, load_case, load, *, name=None, direction=None, c_sys=None, angle=None)

Method to construct a point load in a node.

Parameters:
  • node (Node) – node object (create_node()) on which the load should be applied

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • load (float) – magnitude of the load in [N]

  • name (str) – name which will be shown in SCIA (default: ‘F{i}’)

  • direction (Direction) – direction of the load (default: Z)

  • c_sys (CSys) – coordinate system (default: global)

  • angle (Tuple[float, float, float]) – angle (Rx, Ry, Rz) [deg] of the load around the respective global X-, Y- and Z-axis

Return type:

PointLoadNode

create_point_load(name, load_case, beam, direction, load_type, load_value, c_sys=None, c_def=None, position_x=None, origin=None, repeat=None, ey=None, ez=None, *, angle=None)

Method to construct a point load on a beam.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • beam (Beam) – beam object (create_beam()) to which the load should be applied

  • direction (Direction) – enumeration of directions

  • load_type (Type) – enumeration of load types

  • load_value (float) – magnitude of the load in [N]

  • c_sys (CSys) – enumeration of coordinate system types (default: global)

  • c_def (CDef) – enumeration of coordinate definition types (default: relative)

  • position_x (float) – position of the load (default: 0)

  • origin (Origin) – enumeration of origin types (default: from start)

  • repeat (int) – number of loads acting on the beam, distributed uniformly (default: 1)

  • ey (float) – eccentricity in Y-direction w.r.t. the beam’s center line in [m] (default: 0)

  • ez (float) – eccentricity in Z-direction w.r.t. the beam’s center line in [m] (default: 0)

  • angle (Tuple[float, float, float]) – angle (Rx, Ry, Rz) [deg] of the load around the respective X-, Y- and Z-axis (default: 0)

Return type:

PointLoad

create_point_moment_node(node, load_case, load, direction, name=None, c_sys=CSys.GLOBAL)

Create a point moment on an existing node.

Parameters:
  • node (Node) – Node of appliance (create_node()).

  • load_case (LoadCase) – Previously created load case of appliance.

  • load (float) – Magnitude of the load [Nm].

  • direction (Direction) – Direction of the load.

  • name (str) – Name of the load in SCIA (default: ‘M{i}’).

  • c_sys (CSys) – Coordinate system (default: global).

Return type:

PointMomentNode

create_line_load(name, load_case, beam, load_type, distribution, load_start, load_end, direction, position_start, position_end, c_def, c_sys, origin, ey, ez)

Method to construct a line load on a beam.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • beam (Beam) – beam object (create_beam()) to which the load should be applied

  • load_type (Type) – enumeration of load types

  • distribution (Distribution) – enumeration of distribution options

  • load_start (float) – magnitude of the load at the start point in [N]

  • load_end (float) – magnitude of the load at the end point in [N]

  • direction (Direction) – enumeration of directions

  • position_start (float) – position of the start point on the beam in [m]

  • position_end (float) – position of the end point on the beam in [m]

  • c_def (CDef) – enumeration of coordinate definition types

  • c_sys (CSys) – enumeration of coordinate system types

  • origin (Origin) – enumeration of origin types

  • ey (float) – eccentricity in Y-direction w.r.t. the beam’s center line in [m]

  • ez (float) – eccentricity in Z-direction w.r.t. the beam’s center line in [m]

Return type:

LineLoad

create_line_moment_on_beam(beam, load_case, m1, m2=None, *, name=None, direction=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Method to construct a line moment on a beam.

Parameters:
  • beam (Beam) – beam object (create_beam()) to which the load should be applied

  • load_case (LoadCase) – previously created load case object in which the load should be applied

  • m1 (float) – magnitude of the moment [Nm/m] on point 1

  • m2 (float) – magnitude of the moment [Nm/m] on point 2. None for uniform load (with magnitude m1) (default: None)

  • name (str) – name which will be shown in SCIA (default: ‘LM{i}’)

  • direction (Direction) – direction of the moment (default: Z)

  • c_def (CDef) – coordinate definition (default: RELATIVE)

  • position_x1 (float) – position of p1 along the beam with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 0.0)

  • position_x2 (float) – position of p2 along the beam with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 1.0)

  • origin (Origin) – reference for position_x1 and position_x2 (default: FROM_START)

Return type:

LineMomentOnBeam

create_line_moment_on_plane(edge, m1, m2=None, *, load_case, name=None, direction=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Method to construct a line moment on a plane edge.

Parameters:
  • edge (Union[Tuple[Plane, int], InternalEdge]) – tuple of the plane object (create_plane()) and edge number to which the load should be applied (1 = between plane.corner_nodes[0] and plane.corner_nodes[1], etc.), or InternalEdge (create_internal_edge())

  • m1 (float) – magnitude of the moment [Nm/m] on point 1

  • m2 (float) – magnitude of the moment [Nm/m] on point 2. None for uniform load (with magnitude m1) (default: None)

  • load_case (LoadCase) – previously created load case object in which the load should be applied

  • name (str) – name which will be shown in SCIA (default: ‘LMS{i}’)

  • direction (Direction) – direction of the moment (default: Z)

  • c_def (CDef) – coordinate definition (default: RELATIVE)

  • position_x1 (float) – position of p1 along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 0.0)

  • position_x2 (float) – position of p2 along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 1.0)

  • origin (Origin) – reference for position_x1 and position_x2 (default: FROM_START)

Return type:

LineMomentOnPlane

create_line_load_on_plane(edge, p1, p2=None, *, load_case, direction=None, name=None, location=None, c_sys=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Method to construct a line load on a plane edge.

Parameters:
  • edge (Union[Tuple[Plane, int], InternalEdge]) – tuple of a plane object (create_plane()) and edge number to which the load will be applied (1 = between plane.corner_nodes[0] and plane.corner_nodes[1], etc.), or InternalEdge (create_internal_edge())

  • p1 (float) – magnitude of the load [N/m] on point 1

  • p2 (float) – magnitude of the load [N/m] on point 2. None for uniform load (with magnitude p1) (default: None)

  • load_case (LoadCase) – previously created load case object in which the load should be applied

  • direction (Direction) – direction of the load (default: Z)

  • name (str) – name which will be shown in SCIA (default: ‘LFS{i}’)

  • location (Location) – location type (default: LENGTH)

  • c_sys (CSys) – coordinate system (default: LOCAL)

  • c_def (CDef) – coordinate definition (default: RELATIVE)

  • position_x1 (float) – position of p1 along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 0.0)

  • position_x2 (float) – position of p2 along the edge with respect to origin ([m] if c_def = ABSOLUTE, else [-]) (default: 1.0)

  • origin (Origin) – reference for position_x1 and position_x2 (default: FROM_START)

Return type:

LineForceSurface

create_surface_load(name, load_case, plane, direction, load_type, load_value, c_sys, location)

Method to construct a surface load on a plane.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • plane (Plane) – plane object (create_plane()) to which the load should be applied

  • direction (Direction) – enumeration of directions

  • load_type (Type) – enumeration of load types

  • load_value (float) – magnitude of the load in [N]

  • c_sys (CSys) – enumeration of coordinate system types

  • location (Location) – enumeration of location options

Return type:

SurfaceLoad

create_thermal_load(name, load_case, beam, distribution, delta, left_delta, right_delta, top_delta, bottom_delta, position_start, position_end, c_def, origin)

Method to construct a temperature load on a beam.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • beam (Beam) – beam object (create_beam()) to which the load should be applied

  • distribution (Distribution) – enumeration of distribution options

  • delta (float) – temperature difference in case of a CONSTANT distribution

  • left_delta (float) – temperature difference in +Y direction

  • right_delta (float) – temperature difference in -Y direction

  • top_delta (float) – temperature difference in +Z direction

  • bottom_delta (float) – temperature difference in -Z direction

  • position_start (float) – position of the start point on the beam in [m]

  • position_end (float) – position of the end point on the beam in [m]

  • c_def (CDef) – enumeration of coordinate definition types

  • origin (Origin) – enumeration of origin types

Return type:

ThermalLoad

create_thermal_surface_load(name, load_case, plane, delta=None, top_delta=None, bottom_delta=None)

Method to construct a temperature load on a plane.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • plane (Plane) – plane object (create_plane()) to which the load should be applied

  • delta (float) – temperature difference in case of a constant distribution

  • top_delta (float) – temperature difference in +Z direction

  • bottom_delta (float) – temperature difference in -Z direction

Return type:

ThermalSurfaceLoad

create_free_surface_load(name, load_case, direction, q1, q2=None, q3=None, points=None, *, distribution=None, selection=None)

Method to construct a free surface load.

Note: can only be defined in XY-plane.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • direction (Direction) – direction of the load

  • q1 (float) – magnitude of the load in the first point in [N]

  • q2 (float) – magnitude of the load in the second point in [N] (distribution = DIR_X | DIR_Y | POINTS only)

  • q3 (float) – magnitude of the load in the third point in [N] (distribution = POINTS only)

  • points (List[Tuple[float, float]]) – list of XY coordinates (at least 3). If distribution = DIR_X | DIR_Y: q1 and q2 are applied to points[0] and points[1] respectively. If distribution = POINTS: q1, q2 and q3 are applied to points[0], points[1] and points[2] respectively.

  • distribution (Distribution) – distribution of the load (default: POINTS)

  • selection (List[Plane]) – selection of 1 or more planes (create_plane()) to generate the load on (default: select = auto)

Return type:

FreeSurfaceLoad

create_free_line_load(name, load_case, point_1, point_2, direction, magnitude_1, magnitude_2)

Method to construct a free line load.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • point_1 (Tuple[float, float]) – XY coordinate of the first point

  • point_2 (Tuple[float, float]) – XY coordinate of the second point

  • direction (Direction) – enumeration of direction options

  • magnitude_1 (float) – magnitude of the load in point_1 in [N]

  • magnitude_2 (float) – magnitude of the load in point_2 in [N]

Return type:

FreeLineLoad

create_free_point_load(name, load_case, direction, magnitude, position)

Method to construct a free point load.

Parameters:
  • name (str) – name which will be shown in SCIA

  • load_case (LoadCase) – previously created load case object in which the load should be placed

  • direction (Direction) – enumeration of direction options

  • magnitude (float) – magnitude of the load in [N]

  • position (Tuple[float, float]) – XY coordinate of the load

Return type:

FreePointLoad

generate_xml_input(as_file=False)

Returns the input file XML representation of the SCIA model and corresponding .def file.

Note

This method needs to be mocked in (automated) unit and integration tests.

Return type:

Union[Tuple[BytesIO, BytesIO], Tuple[File, File]]

Returns:

  • File if as_file = True

  • BytesIO if as_file = False (default)

OutputFileParser

class viktor.external.scia.scia.OutputFileParser

Helper class to extract results from a SCIA output file (.xml).

Example using BytesIO:

xml_output_file = scia_analysis.get_xml_output_file()
result_table = OutputFileParser.get_result(xml_output_file, 'Reactions')
another_result_table = OutputFileParser.get_result(xml_output_file, '2D internal forces')

Example using File:

xml_output_file = scia_analysis.get_xml_output_file(as_file=True)
with xml_output_file.open_binary() as f:
    result_table = OutputFileParser.get_result(f, 'Reactions')
    another_result_table = OutputFileParser.get_result(f, '2D internal forces')
classmethod get_result(file, table_name, *, parent=None)

Retrieve the results of an output XML by ‘table_name’. This corresponds to the ‘name’ attribute that is found in the XML table, e.g. “Result classes - UGT” in the example below:

<container id="..." t="...">
    <table id="..." t="..." name="Result classes - UGT">

In case indenting has been used in the SCIA I/O doc, multiple tables with the name ‘table_name’ will be found. A parent name can be specified as input to account for this indenting (up to 1 indent level). If indenting is used but no parent name is specified, this method will return the first ‘table_name’ table it can find.

Parameters:
  • file (BinaryIO) – SCIA output file (.xml).

  • table_name (str) – Name of the result table to be extracted from the output XML.

  • parent (str) – Name of the parent, e.g. a result class.

Return type:

Dict[str, dict]

:raises viktor.errors.SciaParsingError:
  • if table ‘table_name’ could not be found in the provided output file

  • if no results were found in the XML table ‘table_name’

SciaObject

class viktor.external.scia.object.SciaObject(object_id, name)

Bases: ABC

property object_id: int

ID of the object in SCIA.

property name: str

Name of the object in SCIA.

Layer

class viktor.external.scia.object.Layer(object_id, name, comment=None, structural_model_only=None, current_used_activity=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_layer()

Material

class viktor.external.scia.object.Material(object_id, name)

Reference to an existing material in the .esa template file in which the xml input file will be loaded.

Parameters:
  • object_id (int) – ID of the existing material.

  • name (str) – name of the existing material.

NonLinearFunction

class viktor.external.scia.object.NonLinearFunction(object_id, name, function_type, positive_end, negative_end, impulse)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_nonlinear_function()

class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

TRANSLATION: Type = 0
ROTATION: Type = 1
NONLINEAR_SUBSOIL: Type = 2
class Support(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

RIGID: Support = 0
FREE: Support = 1
FLEXIBLE: Support = 2
property impulse: List[Tuple[float, float]]

Subsoil

class viktor.external.scia.object.Subsoil(object_id, name, stiffness, c1x=None, c1y=None, c1z=None, nonlinear_function=None, c2x=None, c2y=None, is_drained=None, water_air_in_clay_subgrade=None, specific_weight=None, fi=None, sigma_oc=None, c=None, cu=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_subsoil()

class C1z(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FLEXIBLE: C1z = 0
NONLINEAR_FUNCTION: C1z = 1
property nonlinear_function: NonLinearFunction | None

Orthotropy

class viktor.external.scia.object.Orthotropy(object_id, name, material, thickness, D11=None, D22=None, D12=None, D33=None, D44=None, D55=None, d11=None, d22=None, d12=None, d33=None, kxy=None, kyx=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_orthotropy()

Selection

class viktor.external.scia.object.Selection(object_id, name, objects)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_selection()

CrossSection

class viktor.external.scia.object.CrossSection(object_id, name, material)

Bases: SciaObject

Abstract base class of all cross sections.

RectangularCrossSection

class viktor.external.scia.object.RectangularCrossSection(object_id, name, material, width, height)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_rectangular_cross_section()

CircularCrossSection

class viktor.external.scia.object.CircularCrossSection(object_id, name, material, diameter)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_circular_cross_section()

CircularHollowCrossSection

class viktor.external.scia.object.CircularHollowCrossSection(object_id, name, material, diameter, thickness)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_circular_hollow_cross_section()

ComposedCrossSection

class viktor.external.scia.object.ComposedCrossSection(object_id, name, material, material_2)

Bases: CrossSection

Abstract base class of all cross sections, composed of two materials.

CircularComposedCrossSection

class viktor.external.scia.object.CircularComposedCrossSection(object_id, name, material, material_2, diameter, thickness)

Bases: ComposedCrossSection

Do not use this __init__ directly, but create the object by create_circular_composed_cross_section()

NumericalCrossSection

class viktor.external.scia.object.NumericalCrossSection(object_id, name, material, *, A=None, Ay=None, Az=None, AL=None, AD=None, cYUCS=None, cZUCS=None, alpha=None, Iy=None, Iz=None, Wely=None, Welz=None, Wply=None, Wplz=None, Mply_plus=None, Mply_min=None, Mplz_plus=None, Mplz_min=None, dy=None, dz=None, It=None, Iw=None, beta_y=None, beta_z=None)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_numerical_cross_section()

LibraryCrossSection

class viktor.external.scia.object.LibraryCrossSection(object_id, name, material, section, profile)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_library_cross_section()

class Section(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

I: Section = 1
RECTANGULAR_HOLLOW: Section = 2
CIRCULAR_HOLLOW: Section = 3
L: Section = 4
CHANNEL: Section = 5
T: Section = 6
FULL_RECTANGULAR: Section = 7
FULL_CIRCULAR: Section = 11
ASYMMETRIC_I: Section = 101
ROLLED_Z: Section = 102
GENERAL_COLD_FORMED: Section = 110
COLD_FORMED_ANGLE: Section = 111
COLD_FORMED_CHANNEL: Section = 112
COLD_FORMED_Z: Section = 113
COLD_FORMED_C: Section = 114
COLD_FORMED_OMEGA: Section = 115
COLD_FORMED_C_EAVES_BEAM: Section = 116
COLD_FORMED_C_PLUS: Section = 117
COLD_FORMED_ZED: Section = 118
COLD_FORMED_ZED_ASYMMETRIC_LIPS: Section = 119
COLD_FORMED_ZED_INCLINED_LIP: Section = 120
COLD_FORMED_SIGMA: Section = 121
COLD_FORMED_SIGMA_STIFFENED: Section = 122
COLD_FORMED_SIGMA_PLUS: Section = 123
COLD_FORMED_SIGMA_EAVES_BEAM: Section = 124
COLD_FORMED_SIGMA_PLUS_EAVES_BEAM: Section = 125
COLD_FORMED_ZED_BOTH_LIPS_INCLINED: Section = 126
COLD_FORMED_I_PLUS: Section = 127
COLD_FORMED_IS_PLUS: Section = 128
COLD_FORMED_SIGMA_ASYMMETRIC: Section = 129
COLD_FORMED_2C: Section = 130
RAIL_TYPE_KA: Section = 150
RAIL_TYPE_KF: Section = 151
RAIL_TYPE_KG: Section = 152
SFB: Section = 153
IFBA: Section = 154
IFBB: Section = 155
THQ: Section = 156
VIRTUAL_JOIST: Section = 160
MINUS_L: Section = 1002

GeneralCrossSectionElement

class viktor.external.scia.object.GeneralCrossSectionElement(name, element_type, points, *, material=None)

Do not use this __init__ directly, but create the object by create_general_cross_section_element()

class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

POLYGON: Type = 0
OPENING: Type = 1

GeneralCrossSection

class viktor.external.scia.object.GeneralCrossSection(object_id, name, material, elements)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_general_cross_section()

Node

class viktor.external.scia.object.Node(object_id, name, x, y, z)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_node()

Beam

class viktor.external.scia.object.Beam(object_id, name, begin_node, end_node, cross_section, ez=None, lcs_rotation=None, layer=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_beam()

property begin_node: Node
property end_node: Node
property cross_section: CrossSection
property ez: float

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_cross_link()

ArbitraryProfileSpan

class viktor.external.scia.object.ArbitraryProfileSpan(length, type_of_css, cross_section_start, cross_section_end, alignment)

Do not use this __init__ directly, but create the object by create_arbitrary_profile_span()

class TypeOfCss(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • PRISMATIC - The cross-section of the span is constant.

  • PARAM_HAUNCH - A standard haunch is inserted into the span.

  • TWO_CSS - Two cross-sections corresponding to the two end-points of the span are defined. The cross-section varies over the span from one section to the other.

PRISMATIC: TypeOfCss = 0
PARAM_HAUNCH: TypeOfCss = 1
TWO_CSS: TypeOfCss = 2
class Alignment(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

DEFAULT: Alignment = 0
CENTER_LINE: Alignment = 1
TOP_SURFACE: Alignment = 2
BOTTOM_SURFACE: Alignment = 3
LEFT_SURFACE: Alignment = 4
RIGHT_SURFACE: Alignment = 5
TOP_LEFT: Alignment = 6
TOP_RIGHT: Alignment = 7
BOTTOM_LEFT: Alignment = 8
BOTTOM_RIGHT: Alignment = 9
property cross_section_start: CrossSection
property cross_section_end: CrossSection

ArbitraryProfile

class viktor.external.scia.object.ArbitraryProfile(object_id, name, beam, c_def, cross_section, spans)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_arbitrary_profile()

class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute

  • RELATIVE - relative

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
property beam: Beam
property cross_section: CrossSection
property spans: List[ArbitraryProfileSpan]

HingeOnBeam

class viktor.external.scia.object.HingeOnBeam(object_id, name, beam, position, freedom_ux=Freedom.FREE, freedom_uy=Freedom.FREE, freedom_uz=Freedom.FREE, freedom_fix=Freedom.FREE, freedom_fiy=Freedom.FREE, freedom_fiz=Freedom.FREE, stiffness_ux=0, stiffness_uy=0, stiffness_uz=0, stiffness_fix=0, stiffness_fiy=0, stiffness_fiz=0)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_hinge_on_beam().

class Position(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

BEGIN: Position = 0
END: Position = 1
BOTH: Position = 2
class Freedom(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FREE - The support is free in the specified direction. That is it imposes no constraint in the direction.

  • RIGID - The support in fully rigid in the specified direction.

  • FLEXIBLE - The support is flexible (elastic) in the specified direction. The user has to define the required stiffness of the support.

FREE: Freedom = 0
RIGID: Freedom = 1
FLEXIBLE: Freedom = 2
property beam: Beam
property freedom: Tuple[Freedom, Freedom, Freedom, Freedom, Freedom, Freedom]

ux, uy, uz, fix, fiy, fiz

property stiffness: Tuple[float, float, float, float, float, float]

ux, uy, uz, fix, fiy, fiz

HingeOnPlane

class viktor.external.scia.object.HingeOnPlane(object_id, name, edge, ux=None, stiffness_ux=None, uy=None, stiffness_uy=None, uz=None, stiffness_uz=None, fix=None, stiffness_fix=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_hinge_on_plane().

class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the plane edge

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Freedom(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FREE - The support is free in the specified direction. That is it imposes no constraint in the direction.

  • RIGID - The support in fully rigid in the specified direction.

  • FLEXIBLE - The support is flexible (elastic) in the specified direction. The user has to define the required stiffness of the support.

FREE: Freedom = 0
RIGID: Freedom = 1
FLEXIBLE: Freedom = 2
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the plane edge

  • FROM_END - position is measured from the end of the plane edge

FROM_START: Origin = 0
FROM_END: Origin = 1
property plane: Plane

Plane

class viktor.external.scia.object.Plane(object_id, name, thickness, material, *, plane_type=None, layer=None, corner_nodes=None, internal_nodes=None, swap_orientation=None, lcs_rotation=None, fem_model=None, orthotropy=None, center_node=None, vertex_node=None, axis=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_plane() or create_circular_plane()

class FEMModel(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

ISOTROPIC: FEMModel = 0
ORTHOTROPIC: FEMModel = 1
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • PLATE - A standard plate is a planar 2D member with an arbitrary number of edges that may be straight or curved.

  • WALL - A wall is a vertical 2D member whose base is either straight or curved.

  • SHELL - Shells are defined by border lines (i.e. border curves). The shape of the shell can be defined by four, three or two curves / straight lines.

PLATE: Type = 0
WALL: Type = 1
SHELL: Type = 2
property corner_nodes: List[Node]
property internal_nodes: List[Node]
property swap_orientation: bool
property lcs_rotation: float

LineSupport

class viktor.external.scia.object.LineSupport(object_id, name, x=None, stiffness_x=None, function_x=None, y=None, stiffness_y=None, function_y=None, z=None, stiffness_z=None, function_z=None, rx=None, stiffness_rx=None, function_rx=None, ry=None, stiffness_ry=None, function_ry=None, rz=None, stiffness_rz=None, function_rz=None, c_sys=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: SciaObject

Abstract base class of all line supports.

class Constraint(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FIXED: Constraint = 0
HINGED: Constraint = 1
SLIDING: Constraint = 2
CUSTOM: Constraint = 3
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

LINE: Type = 0
FOUNDATION_STRIP: Type = 1
WALL: Type = 2
class Freedom(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FREE: Freedom = 0
RIGID: Freedom = 1
FLEXIBLE: Freedom = 2
RIGID_PRESS_ONLY: Freedom = 3
RIGID_TENSION_ONLY: Freedom = 4
FLEXIBLE_PRESS_ONLY: Freedom = 5
FLEXIBLE_TENSION_ONLY: Freedom = 6
NONLINEAR: Freedom = 7
class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Extent(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FULL - support across the full length

  • SPAN - support across a span

FULL: Extent = 0
SPAN: Extent = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1
property constraint: Constraint
property freedom: Tuple[Freedom, Freedom, Freedom, Freedom, Freedom, Freedom]
property stiffness: Tuple[float | None, float | None, float | None, float | None, float | None, float | None]
property function_x: NonLinearFunction | None
property function_y: NonLinearFunction | None
property function_z: NonLinearFunction | None
property function_rx: NonLinearFunction | None
property function_ry: NonLinearFunction | None
property function_rz: NonLinearFunction | None

LineSupportLine

class viktor.external.scia.object.LineSupportLine(object_id, name, beam, x=None, stiffness_x=None, function_x=None, y=None, stiffness_y=None, function_y=None, z=None, stiffness_z=None, function_z=None, rx=None, stiffness_rx=None, function_rx=None, ry=None, stiffness_ry=None, function_ry=None, rz=None, stiffness_rz=None, function_rz=None, c_sys=None, extent=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: LineSupport

Do not use this __init__ directly, but create the object by create_line_support_on_beam()

property beam: Beam
property spring_type: Type

LineSupportSurface

class viktor.external.scia.object.LineSupportSurface(object_id, name, edge, x=None, stiffness_x=None, y=None, stiffness_y=None, z=None, stiffness_z=None, rx=None, stiffness_rx=None, ry=None, stiffness_ry=None, rz=None, stiffness_rz=None, c_sys=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: LineSupport

Do not use this __init__ directly, but create the object by create_line_support_on_plane()

property plane: Plane

SurfaceSupportSurface

class viktor.external.scia.object.SurfaceSupportSurface(object_id, name, plane, subsoil)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_surface_support()

property plane: Plane
property subsoil: Subsoil

OpenSlab

class viktor.external.scia.object.OpenSlab(object_id, name, plane, corner_nodes)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_open_slab()

property plane: Plane
property corner_nodes: List[Node]

InternalEdge

class viktor.external.scia.object.InternalEdge(object_id, name, plane, node_1, node_2)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_internal_edge()

property plane: Plane
property node_1: Node
property node_2: Node

PointSupport

class viktor.external.scia.object.PointSupport(object_id, name, node, spring_type, freedom, stiffness, c_sys, default_size=0.2, angle=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_point_support()

class Constraint(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FIXED: Constraint = 0
HINGED: Constraint = 1
SLIDING: Constraint = 2
CUSTOM: Constraint = 3
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

STANDARD: Type = 0
PAD_FOUNDATION: Type = 1
COLUMN: Type = 2
class Freedom(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FREE - The support is free in the specified direction. That is it imposes no constraint in the direction.

  • RIGID - The support in fully rigid in the specified direction.

  • FLEXIBLE - The support is flexible (elastic) in the specified direction. The user has to define the required stiffness of the support.

FREE: Freedom = 0
RIGID: Freedom = 1
FLEXIBLE: Freedom = 2
class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
property node: Node
property constraint: Constraint

PointSupportLine

class viktor.external.scia.object.PointSupportLine(object_id, name, beam, x=None, stiffness_x=None, y=None, stiffness_y=None, z=None, stiffness_z=None, rx=None, stiffness_rx=None, ry=None, stiffness_ry=None, rz=None, stiffness_rz=None, default_size=None, c_sys=None, c_def=None, position_x=None, origin=None, repeat=None, delta_x=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_point_support_on_beam()

class Freedom(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FREE - The support is free in the specified direction. That is it imposes no constraint in the direction.

  • RIGID - The support in fully rigid in the specified direction.

  • FLEXIBLE - The support is flexible (elastic) in the specified direction. The user has to define the required stiffness of the support.

FREE: Freedom = 0
RIGID: Freedom = 1
FLEXIBLE: Freedom = 2
class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1

RigidArm

class viktor.external.scia.object.RigidArm(object_id, name, master_node, slave_node, hinge_on_master, hinge_on_slave)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_rigid_arm()

property master_node: Node
property slave_node: Node

SectionOnBeam

class viktor.external.scia.object.SectionOnBeam(object_id, name, beam, c_def, position_x, origin, repeat, delta_x)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_section_on_beam()

class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1
property beam: Beam

LoadGroup

class viktor.external.scia.object.LoadGroup(object_id, name, load_option, relation=None, load_type=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_load_group()

class LoadOption(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

PERMANENT: LoadOption = 0
VARIABLE: LoadOption = 1
ACCIDENTAL: LoadOption = 2
SEISMIC: LoadOption = 3
class RelationOption(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

STANDARD: RelationOption = 0
EXCLUSIVE: RelationOption = 1
TOGETHER: RelationOption = 2
class LoadTypeOption(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • CAT_A - Domestic

  • CAT_B - Offices

  • CAT_C - Congregation

  • CAT_D - Shopping

  • CAT_E - Storage

  • CAT_F - Vehicle <30kN

  • CAT_G - Vehicle >30kN

  • CAT_H - Roofs

  • SNOW - Snow

  • WIND - Wind

  • TEMPERATURE - Temperature

  • RAIN_WATER - Rain water

  • CONSTRUCTION_LOADS - Construction loads

CAT_A: LoadTypeOption = 0
CAT_B: LoadTypeOption = 1
CAT_C: LoadTypeOption = 2
CAT_D: LoadTypeOption = 3
CAT_E: LoadTypeOption = 4
CAT_F: LoadTypeOption = 5
CAT_G: LoadTypeOption = 6
CAT_H: LoadTypeOption = 7
SNOW: LoadTypeOption = 8
WIND: LoadTypeOption = 11
TEMPERATURE: LoadTypeOption = 12
RAIN_WATER: LoadTypeOption = 20
CONSTRUCTION_LOADS: LoadTypeOption = 21
property relation: RelationOption | None
property load_type: LoadTypeOption | None

LoadCase

class viktor.external.scia.object.LoadCase(object_id, name, description, action_type, load_group)

Bases: SciaObject

Abstract base class of all load cases.

class ActionType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

PERMANENT: ActionType = 0
VARIABLE: ActionType = 1
class PermanentLoadType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

SELF_WEIGHT: PermanentLoadType = 0
STANDARD: PermanentLoadType = 1
PRIMARY_EFFECT: PermanentLoadType = 2
class VariableLoadType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

STATIC: VariableLoadType = 0
PRIMARY_EFFECT: VariableLoadType = 1
class Specification(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

STANDARD: Specification = 100
TEMPERATURE: Specification = 101
STATIC_WIND: Specification = 102
EARTHQUAKE: Specification = 103
SNOW: Specification = 104
class Duration(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

LONG: Duration = 0
MEDIUM: Duration = 1
SHORT: Duration = 2
INSTANTANEOUS: Duration = 3
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • NEG_Z - -Z

  • POS_Z - +Z

  • NEG_Y - -Y

  • POS_Y - +Y

  • NEG_X - -X

  • POS_X - +X

NEG_Z: Direction = 0
POS_Z: Direction = 1
NEG_Y: Direction = 2
POS_Y: Direction = 3
NEG_X: Direction = 4
POS_X: Direction = 5
property load_group: LoadGroup
abstract property load_type: PermanentLoadType | VariableLoadType
abstract property direction: Direction | None
abstract property specification: Specification | None
abstract property duration: Duration | None
abstract property master: str | None
abstract property primary_effect: LoadCase | None

PermanentLoadCase

class viktor.external.scia.object.PermanentLoadCase(object_id, name, description, load_group, load_type, direction=None, primary_effect=None)

Bases: LoadCase

Do not use this __init__ directly, but create the object by create_permanent_load_case()

property load_type: PermanentLoadType
property direction: Direction | None
property specification: None
property duration: None
property master: None
property primary_effect: LoadCase | None

VariableLoadCase

class viktor.external.scia.object.VariableLoadCase(object_id, name, description, load_group, load_type, specification=None, duration=None, primary_effect=None, master=None)

Bases: LoadCase

Do not use this __init__ directly, but create the object by create_variable_load_case()

property load_type: VariableLoadType
property master: str | None
property specification: Specification | None
property duration: Duration | None
property direction: None
property primary_effect: LoadCase | None

LoadCombination

class viktor.external.scia.object.LoadCombination(object_id, name, combination_type, load_cases, *, description=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_load_combination()

class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ENVELOPE_ULTIMATE - Envelope - ultimate

  • ENVELOPE_SERVICEABILITY - Envelope - serviceability

  • LINEAR_ULTIMATE - Linear - ultimate

  • LINEAR_SERVICEABILITY - Linear - serviceability

  • EN_ULS_SET_B - EN-ULS (STR/GEO) Set B

  • EN_ACC_ONE - EN-Accidental 1

  • EN_ACC_TWO - EN-Accidental 2

  • EN_SEISMIC - EN-Seismic

  • EN_SLS_CHAR - EN-SLS Characteristic

  • EN_SLS_FREQ - EN-SLS Frequent

  • EN_SLS_QUASI - EN-SLS Quasi-permanent

  • EN_ULS_SET_C - EN-ULS (STR/GEO) Set C

ENVELOPE_ULTIMATE: Type = 0
ENVELOPE_SERVICEABILITY: Type = 1
LINEAR_ULTIMATE: Type = 2
LINEAR_SERVICEABILITY: Type = 3
EN_ULS_SET_B: Type = 4
EN_ACC_ONE: Type = 5
EN_ACC_TWO: Type = 6
EN_SEISMIC: Type = 7
EN_SLS_CHAR: Type = 8
EN_SLS_FREQ: Type = 9
EN_SLS_QUASI: Type = 10
EN_ULS_SET_C: Type = 11
property load_cases: Dict[LoadCase, float]

NonLinearLoadCombination

class viktor.external.scia.object.NonLinearLoadCombination(object_id, name, combination_type, load_cases, *, description=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by

create_nonlinear_load_combination()

class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

ULTIMATE: Type = 0
SERVICEABILITY: Type = 1
property load_cases: Dict[LoadCase, float]

ResultClass

class viktor.external.scia.object.ResultClass(object_id, name, combinations, nonlinear_combinations)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_result_class()

property combinations: List[LoadCombination]
property nonlinear_combinations: List[NonLinearLoadCombination]

IntegrationStrip

class viktor.external.scia.object.IntegrationStrip(object_id, name, plane, point_1, point_2, width, effective_width_geometry=_EffectiveWidthGeometry.CONSTANT_SYMMETRIC, effective_width_definition=_EffectiveWidthDefinition.WIDTH)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_integration_strip()

property plane: Plane

AveragingStrip

class viktor.external.scia.object.AveragingStrip(object_id, name, plane, strip_type, point_1, width, length, angle, direction)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_averaging_strip()

class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

POINT: AveragingStrip.POINT = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

LONGITUDINAL: Direction = 0
PERPENDICULAR: Direction = 1
BOTH: Direction = 2
NONE: Direction = 3
property plane: Plane

SectionOnPlane

class viktor.external.scia.object.SectionOnPlane(object_id, name, point_1, point_2, draw=None, direction_of_cut=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_section_on_plane()

class Draw(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UPRIGHT_TO_ELEMENT: Draw = 0
ELEMENT_PLANE: Draw = 1
X_DIRECTION: Draw = 2
Y_DIRECTION: Draw = 3
Z_DIRECTION: Draw = 4

ProjectData

class viktor.external.scia.object.ProjectData(*, name=None, part=None, description=None, author=None, date=None)

Bases: SciaObject

New in v13.1.0

Basic project data.

Parameters:
  • name (str) – Project name (default: as defined in ESA model)

  • part (str) – Project part name (default: as defined in ESA model)

  • description (str) – Project description (default: as defined in ESA model)

  • author (str) – Name of the author (default: as defined in ESA model)

  • date (str) – Date of the last modification (default: as defined in ESA model)

MeshSetup

class viktor.external.scia.object.MeshSetup(*, average_1d=1.0, average_2d=1.0, division_2d_1d=50)

Bases: SciaObject

Mesh settings parameters.

Parameters:
  • average_1d (float) – Average size of cables, tendons, elements on subsoil, nonlinear soil spring [m] (default: 1.0).

  • average_2d (float) – Average size of 2d element/curved element [m] (default: 1.0).

  • division_2d_1d (int) – Division for 2D-1D upgrade (default: 50).

SolverSetup

class viktor.external.scia.object.SolverSetup(*, neglect_shear_force_deformation=None, bending_theory=None, solver_type=None, number_of_sections=None, reinforcement_coefficient=None)

Bases: SciaObject

New in v13.1.0

Solver setup.

Parameters:
  • neglect_shear_force_deformation (bool) – Neglect shear force deformation (default: as defined in ESA model)

  • bending_theory (str) – Bending theory of plate/shell analysis (‘mindlin’ | ‘kirchhoff’) (default: as defined in ESA model)

  • solver_type (str) – Type of solver (‘direct’ | ‘iterative’) (default: as defined in ESA model)

  • number_of_sections (float) – Number of sections on average member (default: as defined in ESA model)

  • reinforcement_coefficient (float) – Coefficient for reinforcement (default: as defined in ESA model)

Concrete

class viktor.external.scia.object.Concrete(object_id, name, part, thermal_expansion=None, unit_mass=None, wet_density=None, e_modulus=None, poisson=None, g_modulus=None, log_decrement=None, specific_heat=None, thermal_conductivity=None, *, fck=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by update_concrete_material()

class ECPart(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • GENERAL - concrete EN 1992-1-1

  • BRIDGES - concrete EN 1992-2

GENERAL: ECPart = 0
BRIDGES: ECPart = 1
property ec_part: ECPart

FreeLoad

class viktor.external.scia.object.FreeLoad(object_id, name, load_case, direction, select, validity=None, load_type=None, c_sys=None)

Bases: SciaObject

Abstract base class of all free loads.

Do not use this __init__ directly, but create the object by create_free_point_load(),

create_free_line_load() or create_free_surface_load()

class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Select(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

AUTO: Select = 0
SELECT: Select = 1
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FORCE: Type = 0
class Validity(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

ALL: Validity = 0
NEG_Z: Validity = 1
POS_Z: Validity = 2
FROM_TO: Validity = 3
ZERO_Z: Validity = 4
NEG_Z_INCL_ZERO: Validity = 5
POS_Z_INCL_ZERO: Validity = 6
class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
MEMBER_LCS: CSys = 1
LOAD_LCS: CSys = 2
class Location(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

LENGTH: Location = 0
PROJECTION: Location = 1
property load_case: LoadCase

FreeLineLoad

class viktor.external.scia.object.FreeLineLoad(object_id, name, load_case, point_1, point_2, direction, magnitude_1, magnitude_2, distribution=Distribution.TRAPEZOIDAL, validity=Validity.ALL, load_type=Type.FORCE, select=Select.AUTO, system=CSys.GLOBAL, location=Location.LENGTH)

Bases: FreeLoad

Do not use this __init__ directly, but create the object by create_free_line_load()

class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UNIFORM: Distribution = 0
TRAPEZOIDAL: Distribution = 1

FreePointLoad

class viktor.external.scia.object.FreePointLoad(object_id, name, load_case, direction, magnitude, position, load_type=Type.FORCE, validity=Validity.ALL, select=Select.AUTO, system=CSys.GLOBAL)

Bases: FreeLoad

Do not use this __init__ directly, but create the object by create_free_point_load()

FreeSurfaceLoad

class viktor.external.scia.object.FreeSurfaceLoad(object_id, name, load_case, direction, q1, q2=None, q3=None, points=None, distribution=None, load_type=None, validity=None, system=None, location=None, selection=None)

Bases: FreeLoad

Do not use this __init__ directly, but create the object by create_free_surface_load()

class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UNIFORM: Distribution = 0
DIR_X: Distribution = 1
DIR_Y: Distribution = 2
POINTS: Distribution = 3
property q2: float | None
property q3: float | None
property points: List[Tuple[float, float]] | None
property distribution: Distribution
property selection: List[Plane] | None

LineLoad

class viktor.external.scia.object.LineLoad(object_id, name, load_case, beam, load_type, distribution, load_start, load_end, direction, c_sys, position_start, position_end, c_def, origin, ey, ez)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_line_load()

class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UNIFORM: Distribution = 0
TRAPEZOIDAL: Distribution = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FORCE: Type = 0
SELF_WEIGHT: Type = 1
property beam: Beam
property load_case: LoadCase

LineMomentOnBeam

class viktor.external.scia.object.LineMomentOnBeam(object_id, name, beam, load_case, m1, m2=None, direction=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_line_moment_on_beam().

class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1

LineMomentOnPlane

class viktor.external.scia.object.LineMomentOnPlane(object_id, name, edge, load_case, m1, m2=None, direction=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_line_moment_on_plane().

class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the plane edge

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the plane edge

  • FROM_END - position is measured from the end of the plane edge

FROM_START: Origin = 0
FROM_END: Origin = 1
property plane: Plane

LineForceSurface

class viktor.external.scia.object.LineForceSurface(object_id, name, edge, load_case, p1, p2=None, direction=None, location=None, c_sys=None, c_def=None, position_x1=None, position_x2=None, origin=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_line_load_on_plane()

class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UNIFORM: Distribution = 0
TRAPEZOIDAL: Distribution = 1
class Location(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

LENGTH: Location = 0
PROJECTION: Location = 1
class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the plane edge

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the plane edge

  • FROM_END - position is measured from the end of the plane edge

FROM_START: Origin = 0
FROM_END: Origin = 1
property plane: Plane
property load_case: LoadCase
property c_sys: CSys
property location: Location
property distribution: Distribution
property c_def: CDef
property position_x1: float | None
property position_x2: float | None
property origin: Origin

PointLoadNode

class viktor.external.scia.object.PointLoadNode(object_id, name, node, load_case, load, direction=None, c_sys=None, angle=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_point_load_node()

class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
property node: Node
property load_case: LoadCase

PointLoad

class viktor.external.scia.object.PointLoad(object_id, name, load_case, beam, direction, load_type, load_value, c_sys=None, c_def=None, position_x=None, origin=None, repeat=None, ey=None, ez=None, *, angle=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_point_load()

class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UNIFORM: Distribution = 0
TRAPEZOIDAL: Distribution = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FORCE: Type = 0
property beam: Beam
property load_case: LoadCase

PointMomentNode

class viktor.external.scia.object.PointMomentNode(object_id, name, node, load_case, load, direction, c_sys)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_point_moment_node().

class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
property node: Node
property load_case: LoadCase

SurfaceLoad

class viktor.external.scia.object.SurfaceLoad(object_id, name, load_case, plane, direction, load_type, load_value, c_sys, location)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_surface_load()

class Direction(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

X: Direction = 0
Y: Direction = 1
Z: Direction = 2
class Type(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FORCE: Type = 0
SELF_WEIGHT: Type = 1
class CSys(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GLOBAL: CSys = 0
LOCAL: CSys = 1
class Location(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

LENGTH: Location = 0
PROJECTION: Location = 1
property plane: Plane
property load_case: LoadCase

ThermalLoad

class viktor.external.scia.object.ThermalLoad(object_id, name, load_case, beam, distribution, delta, left_delta, right_delta, top_delta, bottom_delta, position_start, position_end, c_def, origin)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_thermal_load()

class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

CONSTANT: Distribution = 0
LINEAR: Distribution = 1
class CDef(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • ABSOLUTE - absolute, where the coordinate must lie between 0 and the length of the beam

  • RELATIVE - relative, where the coordinate must lie between 0 and 1

ABSOLUTE: CDef = 0
RELATIVE: CDef = 1
class Origin(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

  • FROM_START - position is measured from the beginning of the beam

  • FROM_END - position is measured from the end of the beam

FROM_START: Origin = 0
FROM_END: Origin = 1
property beam: Beam
property load_case: LoadCase

ThermalSurfaceLoad

class viktor.external.scia.object.ThermalSurfaceLoad(object_id, name, load_case, plane, delta=None, top_delta=None, bottom_delta=None)

Bases: SciaObject

Do not use this __init__ directly, but create the object by create_thermal_surface_load()

class Distribution(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

CONSTANT: Distribution = 0
LINEAR: Distribution = 1