Skip to main content
Version: 14

viktor.external.idea

IdeaRcsAnalysis

class viktor.external.idea_rcs.idea_rcs.IdeaRcsAnalysis(input_file, *, return_result_xml=None, return_rcs_file=None)

Bases: ExternalProgram

Can be used to perform an analysis using IDEA StatiCa RCS on a third-party worker. To start an analysis call the method execute(), with an appropriate timeout (in seconds). To retrieve the results call the method get_output_file(), after execute().

Usage:

idea_rcs_file = File.from_data("idea rcs input file content")
idea_rcs_analysis = IdeaRcsAnalysis(input_file=idea_rcs_file)
idea_rcs_analysis.execute(timeout=10)
result = idea_rcs_analysis.get_output_file()

Exceptions which can be raised during calculation:

Parameters:
  • input_file (Union[BytesIO, File]) – IDEA (Open)Model input XML file.

  • return_result_xml (bool) – Result .xml file will be available if set to True (default: True).

  • return_rcs_file (bool) – Input .ideaRcs file will be available if set to True (default: False).

get_output_file(*, as_file=False)

Method can be used to retrieve the results generated by running an external analysis. The file is only available when return_result_xml=True. execute() must be called first.

Return type:

Union[BytesIO, File, None]

Returns:

  • File (encoding=’utf-16’), if as_file = True

  • BytesIO (encoding=’utf-16’), if as_file = False (default)

get_idea_rcs_file(*, as_file=False)

Method can be used to retrieve the .ideaRcs file which is converted from the (Open)Model input XML. The file is only available when return_rcs_file=True. execute() must be called first.

Return type:

Union[BytesIO, File, None]

Returns:

  • File, if as_file = True

  • BytesIO, if as_file = False (default)

OpenModel

class viktor.external.idea_rcs.idea_rcs.OpenModel(*, project_data=None, code_settings=None)

Bases: _Model

Can be used to construct an IDEA-RCS model and generate its corresponding input XML file. This file can in turn be used as input of IdeaRcsAnalysis. For a more elaborate example implementation, please see the guide.

The OpenModel follows IDEA’s underlying API. Alternatively, you can use Model.

Warning

Use this binding at own risk. Whether an input XML file represents a valid model is dependent on many things, e.g. on the combination of certain parameters. The OpenModel does not give any guarantees on this. It is therefore important to always validate your model by hand thoroughly, before using it in an automated way within your app!

Example usage:

# Initialize the model.
model = OpenModel()  # empty model, or optionally pass ProjectData and/or CodeSettings

# Create the concrete section.
mat = model.create_matconcrete_ec2(ConcreteMaterial.C12_15)
cs = model.create_cross_section_parameter(name='cs', cross_section_type=CrossSectionType.RECT, material=mat,
                                          Width=2.0, Height=2.0)

# Create the reinforced cross-section.
rcs = model.create_reinforced_cross_section(name='rcs', cross_section=cs)

# Create bars (and stirrups) as desired
mat_reinf = model.create_matreinforcement_ec2(ReinforcementMaterial.B_400A)

bar_locations = [(-0.101, -0.175), (0.101, -0.175), (0.101, 0.175), (-0.101, 0.175)]
bar_diameters = [0.016, 0.016, 0.016, 0.016]

for coords, diameter in zip(bar_locations, bar_diameters):
    rcs.create_bar(coords, diameter, mat_reinf)

# Create a CheckMember.
member = model.create_check_member1d()

# 'Assign' the CheckMember to a CheckSection with the previously defined reinforced section and add extremes.
check_section = model.add_check_section(description='S 1', check_member=member, reinf_section=rcs)
freq = LoadingSLS(ResultOfInternalForces(N=-100000, My=210000))
fund = LoadingULS(ResultOfInternalForces(N=-99999, My=200000))
check_section.create_extreme(frequent=freq, fundamental=fund)

# 'Assign' the necessary additional data to the CheckMember.
model.add_member_data_ec2(member, MemberType.BEAM_SLAB, TwoWaySlabType.SHELL_AS_PLATE)

# Generate the input XML file.
input_xml = model.generate_xml_input()
Parameters:
  • project_data (ProjectData) – project_data (default: IDEA-RCS default project_data)

  • code_settings (CodeSettings) – code and calculation settings (default: IDEA-RCS default settings)

project_data
code_settings
generate_xml_input(*, as_file=False)

Generates the input file XML representation of the IDEA-RCS model.

Warning

Whether an input XML file represents a valid model is dependent on many things, e.g. on the combination of certain parameters. The OpenModel does not give any guarantees on this. It is therefore important to always validate your model by hand thoroughly, before using it in an automated way within your app!

Note

This method needs to be mocked in (automated) unit and integration tests.

Parameters:

as_file (bool) – return as BytesIO (default) or File

New in v13.5.0

Return type:

Union[BytesIO, File]

create_matconcrete_ec2(base_material, name=None, *, e_modulus=32800, g_modulus=13667, poisson=0.2, unit_mass=2500, specific_heat=0.6, thermal_expansion=1e-05, thermal_conductivity=45, is_default=False, order_in_code=1, thermal_state=None, fck_28=None, stone_diameter=0.016, cement_class=ConcCementClass.R, aggregate_type=ConcAggregateType.QUARTZITE, diagram_type=ConcDiagramType.PARABOLIC, silica_fume=False, plain_concrete_diagram=False, dep_params=None)

Create a material concrete Ec2 object and add it to the model.

Parameters:
  • base_material (ConcreteMaterial) – IDEA-RCS base material to start with.

  • name (str) – Name of the material (default: base_material name).

  • e_modulus (float) – Young’s modulus [MPa] (default: 32800 MPa).

  • g_modulus (float) – Shear modulus [MPa] (default: 13667 MPa).

  • poisson (float) – Poisson’s ratio (default: 0.2).

  • unit_mass (float) – Unit mass [kg/m3] (default: 2500 kg/m3).

  • specific_heat (float) – Specific heat capacity (default: 0.6).

  • thermal_expansion (float) – Thermal expansion [1/K] (default: 1e-05).

  • thermal_conductivity (float) – Thermal conductivity (default: 45).

  • is_default (bool) – True if material is default material in IDEA-RCS code (default: False).

  • order_in_code (int) – Order of this material in the IDEA-RCS code (default: 1).

  • thermal_state (ThermalState) – Collection of thermal states for expansion, conductivity, specific heat, stress-strain and strain curvatures (default: ThermalState()).

  • fck_28 (float) – Characteristic compressive cylinder strength of concrete at 28 days [MPa] (default: base_material fck).

  • stone_diameter (float) – Aggregate size (default: 16 mm).

  • cement_class (ConcCementClass) – Cement class (default: R).

  • aggregate_type (ConcAggregateType) – Aggregate type (default: Quartzite).

  • diagram_type (ConcDiagramType) – Type of stress-strain diagram for ULS calculation (default: Parabolic).

  • silica_fume (bool) – Contains silica fume (default: False) (EN 1992-2:2008-07 only).

  • plain_concrete_diagram (bool) – Stress strain diagram with tension part (default: False).

  • dep_params (ConcDependentParams) – Collection of a series of dependent parameters (see ConcDependentParams for more info). If None, values will be calculated based on ‘fck’ (default: None).

Return type:

MatConcreteEc2

create_matreinforcement_ec2(base_material, name=None, *, e_modulus=200000, g_modulus=83333, poisson=0.2, unit_mass=7850, specific_heat=0.6, thermal_expansion=1e-05, thermal_conductivity=45, is_default=False, order_in_code=1, thermal_state=None, bar_surface=BarSurface.RIBBED, fyk=None, ftk_by_fyk=None, epsuk=None, ftk=None, class_=ReinfClass.B, type_=ReinfType.BARS, fabrication=ReinfFabrication.HOT_ROLLED, diagram_type=ReinfDiagramType.BILINEAR_INCLINED)

Create a material reinforcement Ec2 object and add it to the model.

Parameters:
  • base_material (ReinforcementMaterial) – IDEA-RCS base material to start with.

  • name (str) – Name of the material (default: base_material name).

  • e_modulus (float) – Young’s modulus [MPa] (default: 200000 MPa).

  • g_modulus (float) – Shear modulus [MPa] (default: 83333 MPa).

  • poisson (float) – Poisson’s ratio (default: 0.2).

  • unit_mass (float) – Unit mass [kg/m3] (default: 7850 kg/m3).

  • specific_heat (float) – Specific heat capacity (default: 0.6).

  • thermal_expansion (float) – Thermal expansion [1/K] (default: 1e-05).

  • thermal_conductivity (float) – Thermal conductivity (default: 45).

  • is_default (bool) – True if material is default material in IDEA-RCS code (default: False).

  • order_in_code (int) – Order of this material in the IDEA-RCS code (default: 1).

  • thermal_state (ThermalState) – Collection of thermal states for expansion, conductivity, specific heat, stress-strain and strain curvatures (default: ThermalState()).

  • bar_surface (BarSurface) – Bar surface (default: Ribbed).

  • fyk (float) – Characteristic yield strength of reinforcement (default: base_material fyk).

  • ftk_by_fyk (float) – factor k = ratio ftk / fyk (default: base_material k).

  • epsuk (float) – Characteristic strain of reinforcement at maximum load - εuk [x 1e-4].

  • ftk (float) – Characteristic tensile strength of reinforcement (default: base_material ftk).

  • class – Class of reinforcement (default: B).

  • type – Type of reinforcement (default: Bars).

  • fabrication (ReinfFabrication) – Fabrication of reinforcement (default: Hot rolled).

  • diagram_type (ReinfDiagramType) – Type of material diagram (default: Bilinear with an inclined top branch).

Return type:

MatReinforcementEc2

create_cross_section_component(name=None)

Create a cross-section object defined by one or multiple components and add it to the model.

Parameters:

name (str) – Name of cross-section (default: ‘’).

Return type:

CrossSectionComponent

create_cross_section_parameter(cross_section_type, material, name=None, **parameters)

Create a cross-section object defined by parameters and add it to the model.

Parameters:
  • cross_section_type (CrossSectionType) – Type of cross-section.

  • material (MatConcrete) – Material (created by create_matconcrete_ec2()).

  • name (str) – Name of cross-section (default: ‘’).

  • parameters (Any) – keyword naming should correspond to chosen cross_section_type(!).

Return type:

CrossSectionParameter

The following combinations of cross_section_type and parameters can be used (see the IDEA StatiCa interface for the naming convention):

  • O: D

  • RECT: Width, Height

  • TRAPEZOID: H, Bb, Bt

  • IGN: H, Bh, Bs, Ts, Th, Tw

  • IGH: H, Bh, Bs, Ts, Th, Tw, Bfh, Tfh

  • BEAM_SHAPE_I_HAUNCH_CHAMFER: Bbf, Hbf, Hbfh, Bw, H, Htfh, Htf, Btf, Bwh

  • TG: Height, Width, TopFlangeWidth, WallWidth

  • TTFH: Height, Width, TopFlangeWidth, WallWidth, TopFlangeHaunch

  • TGREV: Height, Width, TopFlangeWidth, WallWidth

  • TCHAMFER_1: Height, Width, TopFlangeWidth, WallWidth, TopFlangeHaunch2, WallHaunch2

  • TCHAMFER_2: Height, Width, TopFlangeWidth, WallWidth, TopFlangeHaunch2, WallHaunch1, WallHaunch2

  • TWH: Height, Width, TopFlangeWidth, WallWidth, WallHaunch

  • TTFHREV: Height, Width, TopFlangeWidth, WallWidth, TopFlangeHaunch

  • TWHREV: Height, Width, TopFlangeWidth, WallWidth, WallHaunch

create_reinforced_cross_section(cross_section, name=None)

Create a reinforced cross-section object and add it to the model.

Parameters:
Return type:

ReinforcedCrossSection

create_check_member1d(name=None)

Create a member 1D check, which can be used in add_check_section() and add_member_data_ec2().

Return type:

CheckMember1D

add_check_section(check_member, reinf_section, description=None)

Adds a single section check on the given CheckMember. Note that add_member_data_ec2() must be called subsequently.

Parameters:
Return type:

CheckSection

add_member_data_ec2(member, member_type, two_way_slab_type, *, calculation_setup=None, coeff_kx_for_wmax=None, exposure_class_data=None, creep_coefficient=None, relative_humidity=None)

Adds a concrete member Ec2 data to the model.

Parameters:
  • member (CheckMember) – CheckMember (created by create_check_member1d()). Should be previously added to a check section via add_check_section().

  • member_type (MemberType) – Structural type of member. Must be a valid type corresponding to the reinf_section assigned to the member in add_check_section().

  • two_way_slab_type (TwoWaySlabType) – Two-way slab type. Must be a valid type corresponding to the reinf_section assigned to the member in add_check_section().

  • calculation_setup (CalculationSetup) – Calculation control settings (default: Capacity N-M(-M) | Shear | Interaction | Stress Limitation | Crack width | Detailing).

  • coeff_kx_for_wmax (float) – (Dutch annex only) Coefficient kx to increase limited concrete crack (default: 1.0).

  • exposure_class_data (ExposureClassesDataEc2) – Exposure classes (default: no corrosion).

  • creep_coefficient (float) – Final value of creep coefficient (default: calculated by IDEA-RCS).

  • relative_humidity (float) – Percentage of relative humidity (default: 65).

Return type:

None

SectionPrototype1D

class viktor.external.idea_rcs.idea_rcs.SectionPrototype1D

Bases: _SectionPrototype, ABC

Abstract base class of all 1D (beam-like) section prototypes.

RectSection

class viktor.external.idea_rcs.idea_rcs.RectSection(width, height)

Bases: SectionPrototype1D

Rectangular section.

The origin is located in the centroid of this section.

Parameters:
  • width (float) – Width of the section.

  • height (float) – Height of the section.

GeneralShape

class viktor.external.idea_rcs.idea_rcs.GeneralShape(outline, *, openings=None)

Bases: SectionPrototype1D

General cross-section, defined by a set of coordinates.

Parameters:
  • outline (Sequence[Tuple[float, float]]) – Vertices which define the outline of the section (y, z). A minimum of 3 vertices is required, the outline is automatically closed.

  • openings (Sequence[Sequence[Tuple[float, float]]]) – One or multiple openings, defined by vertices (y, z). A minimum of 3 vertices per opening is required, the opening is automatically closed.

Member

class viktor.external.idea_rcs.idea_rcs.Member(rcs, check_section)

Base class of all member types.

property bars: List[ReinforcedBar]
property stirrups: List[Stirrup]
property extremes: List[CheckSectionExtreme]
create_bar(coordinates, diameter, material)

Create a reinforced bar on the reinforced cross-section.

Parameters:
Return type:

None

create_bar_layer(*, origin, diameter, material, number_of_bars, delta_y=None, delta_z=None)

Create multiple reinforced bars on the reinforced cross-section, positioned on a line.

Parameters:
  • origin (Tuple[float, float]) – Origin point (Y, Z) [m].

  • diameter (float) – Diameter of the bar [m].

  • material (MatReinforcement) – Reinforcement material (created by create_matreinforcement_ec2()).

  • number_of_bars (int) – Number of bars (minimum of 2).

  • delta_y (float) – Distance between origin bar and the last bar in y-direction [m].

  • delta_z (float) – Distance between origin bar and the last bar in z-direction [m].

Return type:

None

create_stirrup(points, diameter, material, distance, shear_check=None, torsion_check=None, mandrel_diameter_factor=None, anchorage_length=None)

Create a stirrup on the reinforced cross-section.

Parameters:
  • points (Sequence[Union[Tuple[float, float], Tuple[Tuple[float, float], Tuple[float, float]]]]) – Sequence of (X, Y) coordinates [m] of the stirrup vertices, connected by straight line segments. For arc-segments use ((X_end, Y_end), (X_on_arc, Y_on_arc)).

  • diameter (float) – Diameter of the stirrup [m].

  • material (MatReinforcement) – Reinforcement material (created by create_matreinforcement_ec2()).

  • distance (float) – Longitudinal distance between stirrups [m].

  • shear_check (bool) – Take stirrup into account in shear check (default: False).

  • torsion_check (bool) – Take stirrup into account in torsion check (default: False).

  • mandrel_diameter_factor (float) – Inner diameter of mandrel as multiple of stirrup diameter [-] (default: 1.0).

  • anchorage_length (float) – Anchorage length [m] (default: 0.0).

Return type:

None

create_extreme(*, description=None, accidental=None, fatigue=None, frequent=None, fundamental=None, characteristic=None, quasi_permanent=None)

Create an extreme case with corresponding internal forces on the beam for checking.

Parameters:
  • description (str) – Description of the extreme (default: ‘{section_name} - E {i}’).

    New in v14.6.0

  • accidental (LoadingULS) – Accidental loading.

  • fatigue (FatigueLoading) – Fatigue loading.

  • frequent (LoadingSLS) – Frequent loading.

  • fundamental (LoadingULS) – Fundamental loading.

  • characteristic (LoadingSLS) – Characteristic loading.

  • quasi_permanent (LoadingSLS) – Quasi-Permanent loading.

Return type:

None

Beam

class viktor.external.idea_rcs.idea_rcs.Beam(rcs, check_section)

Bases: Member

Do not use this __init__ directly, but create the object by Model.create_beam().

CompressionMember

class viktor.external.idea_rcs.idea_rcs.CompressionMember(rcs, check_section)

Bases: Member

Do not use this __init__ directly, but create the object by Model.create_compression_member().

OneWaySlab

class viktor.external.idea_rcs.idea_rcs.OneWaySlab(rcs, check_section)

Bases: Member

Do not use this __init__ directly, but create the object by Model.create_one_way_slab().

Model

class viktor.external.idea_rcs.idea_rcs.Model(*, project_data=None, code_settings=None)

Bases: _Model

Can be used to construct an IDEA-RCS model and generate its corresponding input XML file. This file can in turn be used as input of IdeaRcsAnalysis. For a more detailed elaboration, please see the guide.

Alternatively, you can use OpenModel.

Warning

Use this binding at own risk. Whether an input XML file represents a valid model is dependent on many things, e.g. on the combination of certain parameters. The Model does not give any guarantees on this. It is therefore important to always validate your model by hand thoroughly, before using it in an automated way within your app!

Example usage:

# Initialize the model.
model = Model()  # empty model, or optionally pass ProjectData and/or CodeSettings

# Create the desired material(s).
cs_mat = model.create_concrete_material(ConcreteMaterial.C12_15)
mat_reinf = model.create_reinforcement_material(ReinforcementMaterial.B_400A)

# Create a beam (or other type of member) to be checked.
cross_section = RectSection(0.5, 1.0)
beam = model.create_beam(cross_section, cs_mat)

# Create bars (and stirrups) as desired
bar_locations = [(-0.101, -0.175), (0.101, -0.175), (0.101, 0.175), (-0.101, 0.175)]
bar_diameters = [0.016, 0.016, 0.016, 0.016]

for coords, diameter in zip(bar_locations, bar_diameters):
    beam.create_bar(coords, diameter, mat_reinf)

# Add extreme(s)
freq = LoadingSLS(ResultOfInternalForces(N=-100000, My=210000))
fund = LoadingULS(ResultOfInternalForces(N=-99999, My=200000))
beam.create_extreme(frequent=freq, fundamental=fund)

# Generate the input XML file.
input_xml = model.generate_xml_input()
Parameters:
  • project_data (ProjectData) – project_data (default: IDEA-RCS default project_data)

  • code_settings (CodeSettings) – code and calculation settings (default: IDEA-RCS default settings)

project_data
code_settings
generate_xml_input(*, as_file=False)

Generates the input file XML representation of the IDEA-RCS model.

Warning

Whether an input XML file represents a valid model is dependent on many things, e.g. on the combination of certain parameters. The OpenModel does not give any guarantees on this. It is therefore important to always validate your model by hand thoroughly, before using it in an automated way within your app!

Note

This method needs to be mocked in (automated) unit and integration tests.

Parameters:

as_file (bool) – return as BytesIO (default) or File

New in v13.5.0

Return type:

Union[BytesIO, File]

create_concrete_material(base_material, name=None, *, unit_mass=2500, fck=None, stone_diameter=0.016, cement_class=ConcCementClass.R, aggregate_type=ConcAggregateType.QUARTZITE, diagram_type=ConcDiagramType.PARABOLIC, silica_fume=False, plain_concrete_diagram=False, dep_params=None)

Create a concrete material, to be used in create_beam() and similar methods.

Parameters:
  • base_material (ConcreteMaterial) – IDEA-RCS base material to start with.

  • name (str) – Name of the material (default: base_material name).

  • unit_mass (float) – Unit mass [kg/m3] (default: 2500 kg/m3).

  • fck (float) – Characteristic compressive cylinder strength of concrete at 28 days [MPa] (default: base_material fck).

  • stone_diameter (float) – Aggregate size (default: 16 mm).

  • cement_class (ConcCementClass) – Cement class (default: R).

  • aggregate_type (ConcAggregateType) – Aggregate type (default: Quartzite).

  • diagram_type (ConcDiagramType) – Type of stress-strain diagram for ULS calculation (default: Parabolic).

  • silica_fume (bool) – Contains silica fume (default: False) (EN 1992-2:2008-07 only).

  • plain_concrete_diagram (bool) – Stress strain diagram with tension part (default: False).

  • dep_params (ConcDependentParams) – Collection of a series of dependent parameters (see ConcDependentParams for more info). If None, values will be calculated based on ‘fck’ (default: None).

Return type:

MatConcreteEc2

create_reinforcement_material(base_material, name=None, *, unit_mass=7850, e_modulus=200000, fyk=None, ftk_by_fyk=None, epsuk=None, type_=ReinfType.BARS, bar_surface=BarSurface.RIBBED, class_=ReinfClass.B, fabrication=ReinfFabrication.HOT_ROLLED, diagram_type=ReinfDiagramType.BILINEAR_INCLINED)

Create a reinforcement material, to be used in create_reinforcement_bar().

Parameters:
  • base_material (ReinforcementMaterial) – IDEA-RCS base material to start with.

  • name (str) – Name of the material (default: base_material name).

  • unit_mass (float) – Unit mass [kg/m3] (default: 7850 kg/m3).

  • e_modulus (float) – Young’s modulus [MPa] (default: 200000 MPa).

  • fyk (float) – Characteristic yield strength of reinforcement (default: base_material fyk).

  • ftk_by_fyk (float) – factor k = ratio ftk / fyk (default: base_material k).

  • epsuk (float) – Characteristic strain of reinforcement at maximum load - εuk [x 1e-4].

  • type – Type of reinforcement (default: Bars).

  • bar_surface (BarSurface) – Bar surface (default: Ribbed).

  • class – Class of reinforcement (default: B).

  • fabrication (ReinfFabrication) – Fabrication of reinforcement (default: Hot rolled).

  • diagram_type (ReinfDiagramType) – Type of material diagram (default: Bilinear with an inclined top branch).

Return type:

MatReinforcementEc2

create_beam(cs, material, *, calculation_control=None, name=None, rcs_name=None, design_member_name=None, exposure_classes=None, coeff_kx=None, creep_coefficient=None, relative_humidity=None)

Create a beam section.

Parameters:
  • cs (SectionPrototype1D) – Cross-section prototype.

  • material (MatConcrete) – Material for the cross-section (created by create_concrete_material()).

  • calculation_control (CalculationSetup) – Calculation control settings (default: Capacity N-M(-M) | Shear | Interaction | Stress Limitation | Crack width | Detailing).

  • name (str) – Name of the cross-section (default: ‘S{i}’).

  • rcs_name (str) – Name of the reinforced cross-section (default: ‘R{i}’).

  • design_member_name (str) – Name of the design member (default: ‘M {i}’).

    New in v14.6.0

  • exposure_classes (ExposureClassesDataEc2) – Corrosion exposure classes (default: no corrosion).

  • coeff_kx (float) – (Dutch annex only) Coefficient k_x acc. 7.3.1 (default: 1.0).

  • creep_coefficient (float) – Final value of creep coefficient (default: calculated by IDEA-RCS).

  • relative_humidity (float) – Percentage of relative humidity (default: 65).

Return type:

Beam

create_compression_member(cs, material, *, calculation_control=None, name=None, rcs_name=None, design_member_name=None, exposure_classes=None, coeff_kx=None, creep_coefficient=None, relative_humidity=None)

Create a compression member section.

Parameters:
  • cs (SectionPrototype1D) – Cross-section prototype.

  • material (MatConcrete) – Material for the cross-section (created by create_concrete_material()).

  • calculation_control (CalculationSetup) – Calculation control settings (default: Capacity N-M(-M) | Shear | Interaction | Stress Limitation | Crack width | Detailing).

  • name (str) – Name of the cross-section (default: ‘S{i}’).

  • rcs_name (str) – Name of the reinforced cross-section (default: ‘R{i}’).

  • design_member_name (str) – Name of the design member (default: ‘M {i}’).

    New in v14.6.0

  • exposure_classes (ExposureClassesDataEc2) – Corrosion exposure classes (default: no corrosion).

  • coeff_kx (float) – (Dutch annex only) Coefficient k_x acc. 7.3.1 (default: 1.0).

  • creep_coefficient (float) – Final value of creep coefficient (default: calculated by IDEA-RCS).

  • relative_humidity (float) – Percentage of relative humidity (default: 65).

Return type:

CompressionMember

create_one_way_slab(cs, material, *, calculation_control=None, name=None, rcs_name=None, design_member_name=None, exposure_classes=None, coeff_kx=None, creep_coefficient=None, relative_humidity=None)

Create a one-way slab member section.

Parameters:
  • cs (SectionPrototype1D) – Cross-section prototype.

  • material (MatConcrete) – Material for the cross-section (created by create_concrete_material()).

  • calculation_control (CalculationSetup) – Calculation control settings (default: Capacity N-M(-M) | Shear | Interaction | Stress Limitation | Crack width | Detailing).

  • name (str) – Name of the cross-section (default: ‘S{i}’).

  • rcs_name (str) – Name of the reinforced cross-section (default: ‘R{i}’).

  • design_member_name (str) – Name of the design member (default: ‘M {i}’).

    New in v14.6.0

  • exposure_classes (ExposureClassesDataEc2) – Corrosion exposure classes (default: no corrosion).

  • coeff_kx (float) – (Dutch annex only) Coefficient k_x acc. 7.3.1 (default: 1.0).

  • creep_coefficient (float) – Final value of creep coefficient (default: calculated by IDEA-RCS).

  • relative_humidity (float) – Percentage of relative humidity (default: 65).

Return type:

OneWaySlab

RcsOutputFileParser

class viktor.external.idea_rcs.idea_rcs.RcsOutputFileParser(xml_file)

Parser to extract results from an IDEA-RCS output file (.xml).

Currently the following data can be extracted:

Example using File:

xml_file = idea_rcs_analysis.get_output_file(as_file=True)
with xml_file.open_binary() as f:
    parser = RcsOutputFileParser(f)

    # loop through all sections
    for section in parser.section_results():
        capacity_results = section.capacity()
        shear_results = section.shear()

    # or get results for a single section
    section_4 = parser.section_result(4)
    ...

    # or loop through all extremes within a section
    for extreme in section_4.extremes():
        capacity = extreme['capacity']
        ...

Example using BytesIO:

xml_file = idea_rcs_analysis.get_output_file()
parser = RcsOutputFileParser(xml_file)

for section in parser.section_results():
    ...
Parameters:

xml_file (BinaryIO) – IDEA-RCS XML output file (.xml).

section_result(id_)

Retrieve the section result of the provided id.

Return type:

SectionResult

section_results()

Iterates through all section results.

Usage:

for section in parser.section_results():
    capacity_results = section.capacity()

    if section.id_ == 3:
        ...
Return type:

Iterator[SectionResult]

class SectionResult(id_, element)

Parsed result section, on which specific results can be retrieved.

Do not instantiate this object directly, but retrieve it through RcsOutputFileParser.section_results().

property id_: int

Returns the ‘SectionId’ of current section.

extremes()

Get all results combined per extreme for the current section.

Returns a list of dictionaries in the following format:

[
    {
        'capacity': {...} | None,
        'shear': {...} | None,
        'torsion': {...} | None,        # new in v13.4.0
        'interaction': {...} | None,    # new in v13.4.0
        'crack_width': {...} | None,
        'detailing': {...} | None,
        'stress_limitation': {...} | None,
        'fatigue': {...} | None,
    },
    ...
]
Return type:

List[dict]

capacity()

Get the capacity results of all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'Fu': {
            'N': <float>,
            'Qy': <float>,
            'Qz': <float>,
            'Mx': <float>,
            'My': <float>,
            'Mz': <float>
        },
        'Fu1': {
            ...  # see 'Fu'
        } | None,  # IDEA-RCS >= v10.1 only, else None
        'Fu2': {
            ...  # see 'Fu'
        } | None,  # IDEA-RCS >= v10.1 only, else None
        'CheckValue': <float>,
        'Result': <str>  # new in v13.4.0
    } | None,
    ...
]
Return type:

List[Optional[dict]]

shear()

Get the shear resistances for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'Ved': <float>,
        'Vrdc': <float>,
        'Vrd': <float>,
        'Vrdmax': <float>,
        'Vrdr': <float>,
        'Vrds': <float>,
        'CheckValue': <float>,
        'Result': <str>  # new in v13.4.0
    } | None,
    ...
]
Return type:

List[Optional[dict]]

torsion()

New in v13.4.0

Get the torsion results for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'Ted': <float>,
        'Trdc': <float>,
        'Trdmax': <float>,
        'Trds': <float>,
        'Trd': <float>,
        'CheckValue': <float>,
        'Result': <str>
    } | None,
    ...
]
Return type:

List[Optional[dict]]

interaction()

New in v13.4.0

Get the interaction results for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'Ned': <float>,
        'Medy': <float>,
        'Medz': <float>,
        'Ved': <float>,
        'Ted': <float>,
        'CheckValue': <float>,
        'CheckValueShearAndTorsion': <float>,
        'CheckValueShearTorsionAndBending': <float>,
        'Result': <str>
    } | None,
    ...
]
Return type:

List[Optional[dict]]

crack_width()

Get the crack width (short/long) results for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'short': {
            'N': <float>,
            'My': <float>,
            'Mz': <float>,
            'W': <float>,
            'Wlim': <float>,
            'CheckValue': <float>,
            'Result': <str>  # new in v13.4.0
        } | None,
        'long': {
            ...  # see 'short'
        } | None,
    } | None,
    ...
]
Return type:

List[Optional[dict]]

detailing()

Get the unity checks of the longitudinal reinforcement and shear reinforcement for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'longitudinal': <float> | None,
        'shear': <float> | None,
        'CheckValue': <float>,  # new in v13.4.0
        'CheckValueLongReinf': <float>,  # new in v13.4.0
        'CheckValueShearReinf': <float>,  # new in v13.4.0
        'Result': <str>  # new in v13.4.0
    } | None,
    ...
]
Return type:

List[Optional[dict]]

stress_limitation()

Get the short- and long-term stress limitation results for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'Check_7_2_2_Concrete_fck': {  # new in v13.4.0
            'short': {
                'Stress': <float> | None,
                'CheckValue': <float>,
                'Result': <str>
            } | None,
            'long': {
                ...  # see 'short'
            } | None
        } | None,
        'Check_7_2_3_Concrete_fck': {  # new in v13.4.0
            ...  # see 'Check_7_2_2_Concrete_fck'
        } | None,
        'Check_7_2_5_Tendons_fpk': {  # new in v13.4.0
            ...  # see 'Check_7_2_2_Concrete_fck'
        } | None,
        'Check_7_2_5_ReinforcementBars_fyk': {  # new in v13.4.0
            ...  # see 'Check_7_2_2_Concrete_fck'
        } | None,
        'Check_5_10_3_2_Tendons': {  # new in v13.4.0
            ...  # see 'Check_7_2_2_Concrete_fck'
        } | None,
        'Check_5_10_2_1_1_Tendons': {  # new in v13.4.0
            ...  # see 'Check_7_2_2_Concrete_fck'
        } | None,
        'short': {
            'Check_7_2_2_Concrete_fck': <float> | None,
            ...  # see above for all keys
        } | None,
        'long': {
            'Check_7_2_2_Concrete_fck': <float> | None,
            ...  # see above for all keys
        } | None,
    } | None,
    ...
]
Return type:

List[Optional[dict]]

fatigue()

Get the fatigue results for all extremes for the current section.

Returns a list of dictionaries (or None if not present for a certain extreme) in the following format:

[
    {
        'fatigue': {
            'CheckValue': <float>,
            'DecisionMethod': <str>,
            'Result': <str>  # new in v13.4.0
        },
        'shear': {
            'max': {
                'Ved': <float>,
                'Vrdc': <float>,
                'Vrd': <float>,
                'Vrdmax': <float>,
                'Vrdr': <float>,
                'Vrds': <float>,
                'CheckValue': <float>,
                'Result': <str>  # new in v13.4.0
            },
            'min': {
                ...  # see 'max'
            },
        }
    } | None,
    ...
]
Return type:

List[Optional[dict]]

OutputFileParser

class viktor.external.idea_rcs.idea_rcs.OutputFileParser(xml_file)

Helper class to extract results from a IDEA-RCS output file (.xml).

Note, for very large result files we advise to make use of RcsOutputFileParser instead.

Parameters:

xml_file (StringIO) – valid IDEA-RCS XML output file.

Raises:

ParsingError – if ‘xml_file’ can not be parsed (not a valid format).

Example usage:

parser = OutputFileParser(xml_file)
for section in parser.section_ids:
    capacity_results = parser.capacity_results(section)
    ...

In case you require results which are not supported, you can retrieve the raw results using the raw_results() method.

property section_ids: List[int]

Get all section ids for which results are present in the result file.

raw_results()

Get the (complete) raw results in dict form. Can be used if results need to be extracted that are not supported by the available methods.

Return type:

dict

capacity_results(section_id)

Get the result of applied internal forces of all extremes for the section with provided ‘section_id’.

Parameters:

section_id (int) – id of the check section. Must be present in the output file.

Raises:

ParsingError – if ‘section_id’ is not present in output file.

Return type:

List[Optional[Dict[str, Any]]]

See capacity() for return format.

shear_results(section_id)

Get the shear resistances for all extremes for the section with provided ‘section_id’.

Parameters:

section_id (int) – id of the check section. Must be present in the output file.

Raises:

ParsingError – if ‘section_id’ is not present in output file.

Return type:

List[Optional[Dict[str, Any]]]

See shear() for return format.

crack_width_results(section_id)

Get the crack width (short/long) results for all extremes for the section with provided ‘section_id’.

Parameters:

section_id (int) – id of the check section. Must be present in the output file.

Raises:

ParsingError – if ‘section_id’ is not present in output file.

Return type:

List[Optional[Dict[str, Optional[Dict[str, Any]]]]]

See crack_width() for return format.

detailing_results(section_id)

Get the unity checks of the longitudinal reinforcement and shear reinforcement for all extremes for the section with provided ‘section_id’.

Parameters:

section_id (int) – id of the check section. Must be present in the output file.

Raises:

ParsingError – if ‘section_id’ is not present in output file.

Return type:

List[Optional[Dict[str, Optional[float]]]]

See detailing() for return format.

stress_limitation_results(section_id)

Get the short- and long-term stress limitation results for all extremes for provided ‘section_id’.

Parameters:

section_id (int) – id of the check section. Must be present in the output file.

Raises:

ParsingError – if ‘section_id’ is not present in output file.

Return type:

List[Optional[Dict[str, Optional[float]]]]

See stress_limitation() for return format.

fatigue_results(section_id)

Get the fatigue results for all extremes for the provided ‘section_id’.

Parameters:

section_id (int) – id of the check section. Must be present in the output file.

Raises:

ParsingError – if ‘section_id’ is not present in output file.

Return type:

List[Optional[dict]]

See fatigue() for return format.

ConcreteMaterial

class viktor.external.idea_rcs.objects.ConcreteMaterial(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

C12_15: ConcreteMaterial = 1
C16_20: ConcreteMaterial = 2
C20_25: ConcreteMaterial = 3
C25_30: ConcreteMaterial = 4
C30_37: ConcreteMaterial = 5
C35_45: ConcreteMaterial = 6
C40_50: ConcreteMaterial = 7
C45_55: ConcreteMaterial = 8
C50_60: ConcreteMaterial = 9
C55_67: ConcreteMaterial = 10
C60_75: ConcreteMaterial = 11
C70_85: ConcreteMaterial = 12
C80_95: ConcreteMaterial = 13
C90_105: ConcreteMaterial = 14
C100_115: ConcreteMaterial = 15

ReinforcementMaterial

class viktor.external.idea_rcs.objects.ReinforcementMaterial(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

B_400A: ReinforcementMaterial = 1
B_500A: ReinforcementMaterial = 2
B_600A: ReinforcementMaterial = 3
B_400B: ReinforcementMaterial = 4
B_500B: ReinforcementMaterial = 5
B_600B: ReinforcementMaterial = 6
B_400C: ReinforcementMaterial = 7
B_500C: ReinforcementMaterial = 8
B_600C: ReinforcementMaterial = 9
B_550A: ReinforcementMaterial = 10
B_550B: ReinforcementMaterial = 11

NationalAnnex

class viktor.external.idea_rcs.objects.NationalAnnex(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

NO_ANNEX: NationalAnnex = 'NoAnnex'
DUTCH: NationalAnnex = 'Dutch'
BELGIUM: NationalAnnex = 'Belgian'

ProjectData

class viktor.external.idea_rcs.objects.ProjectData(*, national_annex=None, fatigue_check=False, name=None, number=None, description=None, author=None, date=None, design_working_life=None)

Bases: _OpenObject

Project data.

Parameters:
  • name (str) – Project name

    New in v14.6.0

  • number (str) – Project number

    New in v14.6.0

  • description (str) – Project description

    New in v14.6.0

  • author (str) – Author

    New in v14.6.0

  • date (date) – Date (default: today)

    New in v14.6.0

  • national_annex (NationalAnnex) – national annex (default: No national annex (EN))

  • fatigue_check (bool) – functionality - fatigue (default: false)

  • design_working_life (Literal[50, 75, 100]) – Design working life (default: 50)

    New in v14.6.0

EvaluationInteractionDiagram

class viktor.external.idea_rcs.objects.EvaluationInteractionDiagram(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

NU_MU_MU: EvaluationInteractionDiagram = 0
NU_M_M: EvaluationInteractionDiagram = 1
N_MU_MU: EvaluationInteractionDiagram = 2

NoResistanceConcreteTension1d

class viktor.external.idea_rcs.objects.NoResistanceConcreteTension1d(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

EXTREME: NoResistanceConcreteTension1d = 0
SECTION: NoResistanceConcreteTension1d = 1
ALWAYS: NoResistanceConcreteTension1d = 2

TypeSLSCalculation

class viktor.external.idea_rcs.objects.TypeSLSCalculation(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

BOTH: TypeSLSCalculation = 0
SHORT_TERM: TypeSLSCalculation = 1
LONG_TERM: TypeSLSCalculation = 2

CodeSettings

class viktor.external.idea_rcs.objects.CodeSettings(*, evaluation_interaction_diagram=None, theta=None, theta_min=None, theta_max=None, n_cycles_fatigue=None, no_resistance_concrete_tension_1d=None, type_sls_calculation=None)

Bases: _OpenObject

Code and calculation settings.

Parameters:
  • evaluation_interaction_diagram (EvaluationInteractionDiagram) – evaluation of interaction diagram (default: NuMuMu)

  • theta (float) – angle [deg] between the concrete compression strut and the beam axis perpendicular to the shear force (default: set by IDEA)

  • theta_min (float) – minimum angle [deg] between the concrete compression strut and the beam axis perpendicular to the shear force (default: set by IDEA)

  • theta_max (float) – maximum angle [deg] between the concrete compression strut and the beam axis perpendicular to the shear force (default: set by IDEA)

  • n_cycles_fatigue (float) – number of fatigue cycles (* 10⁶) (default: set by IDEA)

  • no_resistance_concrete_tension_1d (NoResistanceConcreteTension1d) – no resistance of concrete in tension - members 1D (default: Extreme)

  • type_sls_calculation (TypeSLSCalculation) – type of SLS calculation (default: Both)

CheckMember

class viktor.external.idea_rcs.objects.CheckMember(id_)

Bases: _OpenElementId, ABC

Abstract base class of all check members.

CheckMember1D

class viktor.external.idea_rcs.objects.CheckMember1D(id_, name)

Bases: CheckMember

Do not use this __init__ directly, but create the object by create_check_member1d().

ThermalStateType

class viktor.external.idea_rcs.objects.ThermalStateType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

NONE: ThermalStateType = 0
CODE: ThermalStateType = 1
USER: ThermalStateType = 5

ThermalState

class viktor.external.idea_rcs.objects.ThermalState(expansion=ThermalStateType.NONE, conductivity=ThermalStateType.NONE, specific_heat=ThermalStateType.NONE, stress_strain=ThermalStateType.NONE, strain=ThermalStateType.NONE)

Bases: _OpenObject

Collection of thermal states for expansion, conductivity, specific heat, stress-strain and strain.

Parameters:

ReinfClass

class viktor.external.idea_rcs.objects.ReinfClass(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

A: ReinfClass = 0
B: ReinfClass = 1
C: ReinfClass = 2

ReinfType

class viktor.external.idea_rcs.objects.ReinfType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

BARS: ReinfType = 0
DECOILED_RODS: ReinfType = 1
WIRE_FABRICS: ReinfType = 2
LATTICE_GIRDERS: ReinfType = 3

BarSurface

class viktor.external.idea_rcs.objects.BarSurface(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

SMOOTH: BarSurface = 0
RIBBED: BarSurface = 1

ReinfDiagramType

class viktor.external.idea_rcs.objects.ReinfDiagramType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

BILINEAR_INCLINED: ReinfDiagramType = 0
BILINEAR_NOT_INCLINED: ReinfDiagramType = 1
USER: ReinfDiagramType = 2

ReinfFabrication

class viktor.external.idea_rcs.objects.ReinfFabrication(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

HOT_ROLLED: ReinfFabrication = 0
COLD_WORKED: ReinfFabrication = 1

MatReinforcement

class viktor.external.idea_rcs.objects.MatReinforcement(id_, name, e_modulus, g_modulus, poisson, unit_mass, specific_heat, thermal_expansion, thermal_conductivity, is_default, order_in_code, thermal_state, bar_surface)

Bases: _Material, ABC

Abstract base class of all material reinforcements.

MatReinforcementEc2

class viktor.external.idea_rcs.objects.MatReinforcementEc2(id_, name, e_modulus, g_modulus, poisson, unit_mass, specific_heat, thermal_expansion, thermal_conductivity, is_default, order_in_code, thermal_state, bar_surface, fyk, ftk_by_fyk, epsuk, ftk, class_, type_, fabrication, diagram_type)

Bases: MatReinforcement

Do not use this __init__ directly, but create the object by create_matreinforcement_ec2().

ConcDiagramType

class viktor.external.idea_rcs.objects.ConcDiagramType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

BILINEAR: ConcDiagramType = 0
PARABOLIC: ConcDiagramType = 1
USER: ConcDiagramType = 2

ConcAggregateType

class viktor.external.idea_rcs.objects.ConcAggregateType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

QUARTZITE: ConcAggregateType = 0
LIMESTONE: ConcAggregateType = 1
SANDSTONE: ConcAggregateType = 2
BASALT: ConcAggregateType = 3

ConcCementClass

class viktor.external.idea_rcs.objects.ConcCementClass(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

S: ConcCementClass = 0
R: ConcCementClass = 1
N: ConcCementClass = 2

MatConcrete

class viktor.external.idea_rcs.objects.MatConcrete(id_, name, e_modulus, g_modulus, poisson, unit_mass, specific_heat, thermal_expansion, thermal_conductivity, is_default, order_in_code, thermal_state)

Bases: _Material, ABC

Abstract base class of all concrete materials.

ConcDependentParams

class viktor.external.idea_rcs.objects.ConcDependentParams(E_cm, eps_c1, eps_c2, eps_c3, eps_cu1, eps_cu2, eps_cu3, F_ctm, F_ctk_0_05, F_ctk_0_95, n_factor, F_cm)

Bases: _OpenObject

Collection of all MatConcreteEc2 dependent parameters.

Parameters:
  • E_cm (float) – Secant modulus of elasticity of concrete [MPa]

  • eps_c1 (float) – Compressive strain in the concrete - εc1 [-]

  • eps_c2 (float) – Compressive strain in the concrete - εc2 [-]

  • eps_c3 (float) – Compressive strain in the concrete - εc3 [-]

  • eps_cu1 (float) – Ultimate compressive strain in the concrete - εcu1 [-]

  • eps_cu2 (float) – Ultimate compressive strain in the concrete - εcu2 [-]

  • eps_cu3 (float) – Ultimate compressive strain in the concrete - εcu3 [-]

  • F_ctm (float) – Mean value of axial tensile strength of concrete [MPa]

  • F_ctk_0_05 (float) – Characteristic axial tensile strength of concrete 5% quantile [MPa]

  • F_ctk_0_95 (float) – Characteristic axial tensile strength of concrete 95% quantile [MPa]

  • n_factor (float) – Coefficient n-factor - necessary parabolic part of stress-strain diagram - n [-]

  • F_cm (float) – Mean value of concrete cylinder compressive strength [MPa]

MatConcreteEc2

class viktor.external.idea_rcs.objects.MatConcreteEc2(id_, name, e_modulus, g_modulus, poisson, unit_mass, specific_heat, thermal_expansion, thermal_conductivity, is_default, order_in_code, thermal_state, fck, stone_diameter, cement_class, aggregate_type, diagram_type, silica_fume, plain_concrete_diagram, dep_params=None)

Bases: MatConcrete

Do not use this __init__ directly, but create the object by create_matconcrete_ec2().

CrossSectionType

class viktor.external.idea_rcs.objects.CrossSectionType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

ONE_COMPONENT_CSS: CrossSectionType = 0
ROLLED_I: CrossSectionType = 1
ROLLED_ANGLE: CrossSectionType = 2
ROLLED_T: CrossSectionType = 3
ROLLED_U: CrossSectionType = 4
ROLLED_CHS: CrossSectionType = 5
ROLLED_RHS: CrossSectionType = 6
ROLLED_DOUBLE_UO: CrossSectionType = 7
ROLLED_DOUBLE_UC: CrossSectionType = 8
ROLLED_DOUBLE_LT: CrossSectionType = 10
ROLLED_DOUBLE_LU: CrossSectionType = 11
ROLLED_TI: CrossSectionType = 12
ROLLED_I_PAR: CrossSectionType = 13
ROLLED_U_PAR: CrossSectionType = 14
ROLLED_L_PAR: CrossSectionType = 15
BOX_FL: CrossSectionType = 16
BOX_WEB: CrossSectionType = 17
BOX_2I: CrossSectionType = 18
BOX_2U: CrossSectionType = 19
BOX_2U_2PI: CrossSectionType = 20
BOX_2L: CrossSectionType = 21
BOX_4L: CrossSectionType = 22
IW: CrossSectionType = 23
IWN: CrossSectionType = 24
TW: CrossSectionType = 25
O: CrossSectionType = 26
RECT: CrossSectionType = 27
IGN: CrossSectionType = 28
IGH: CrossSectionType = 29
TG: CrossSectionType = 30
LG: CrossSectionType = 31
LG_MIRRORED: CrossSectionType = 32
UG: CrossSectionType = 33
CHS_G: CrossSectionType = 34
ZG: CrossSectionType = 35
RHS_G: CrossSectionType = 36
OVAL: CrossSectionType = 37
GENERAL: CrossSectionType = 38
ROLLED_2I: CrossSectionType = 39
TRAPEZOID: CrossSectionType = 40
TTFH: CrossSectionType = 41
TWH: CrossSectionType = 42
TGREV: CrossSectionType = 43
TTFHREV: CrossSectionType = 44
TWHREV: CrossSectionType = 45
TCHAMFER_1: CrossSectionType = 46
TCHAMFER_2: CrossSectionType = 47
TT: CrossSectionType = 48
TT1: CrossSectionType = 49
SG: CrossSectionType = 50
GENERAL_STEEL: CrossSectionType = 51
GENERAL_CONCRETE: CrossSectionType = 52
COMPOSITE_BEAM_BOX: CrossSectionType = 53
COMPOSITE_BEAM_BOX_1: CrossSectionType = 54
COMPOSITE_BEAM_IGEN_T: CrossSectionType = 55
COMPOSITE_BEAM_L_LEFT: CrossSectionType = 56
COMPOSITE_BEAM_PLATE: CrossSectionType = 57
COMPOSITE_BEAM_R_RES_T: CrossSectionType = 58
COMPOSITE_BEAM_R_RES_T_1: CrossSectionType = 59
COMPOSITE_BEAM_R_T: CrossSectionType = 60
COMPOSITE_BEAM_SHAPE_CHAMF: CrossSectionType = 61
COMPOSITE_BEAM_SHAPE_CHAMF_ASYM: CrossSectionType = 62
COMPOSITE_BEAM_SHAPE_IGEN: CrossSectionType = 63
COMPOSITE_BEAM_SHAPE_I_T: CrossSectionType = 64
COMPOSITE_BEAM_SHAPE_I_T_ASYM: CrossSectionType = 65
COMPOSITE_BEAM_T_LEFT: CrossSectionType = 66
COMPOSITE_BEAM_TRAPEZOID: CrossSectionType = 67
COMPOSITE_BEAM_TRES_T: CrossSectionType = 68
COMPOSITE_BEAM_TREV: CrossSectionType = 69
COMPOSITE_BEAM_TREV_RES_I: CrossSectionType = 70
COMPOSITE_BEAM_TREV_RES_I_1: CrossSectionType = 71
COMPOSITE_BEAM_TREV_RES_R: CrossSectionType = 72
COMPOSITE_BEAM_TREV_RES_R_1: CrossSectionType = 73
COMPOSITE_BEAM_TREV_T: CrossSectionType = 74
COMPOSITE_BEAM_SHAPE_T_T: CrossSectionType = 75
BEAM_SHAPE_I_HAUNCH_CHAMFER: CrossSectionType = 76
BEAM_SHAPE_I_HAUNCH_CHAMFER_ASYM: CrossSectionType = 77
BEAM_SHAPE_REV_U: CrossSectionType = 78
BEAM_SHAPE_BOX: CrossSectionType = 79
BEAM_SHAPE_BOX_1: CrossSectionType = 80
BEAM_SHAPE_TREV_CHAMFER_HAUNCH_S: CrossSectionType = 81
BEAM_SHAPE_TREV_CHAMFER_HAUNCH_D: CrossSectionType = 82
BEAM_SHAPE_IREV_DEGEN: CrossSectionType = 83
BEAM_SHAPE_IREV_DEGEN_ADD: CrossSectionType = 84
BEAM_SHAPE_TREV_DEGEN: CrossSectionType = 85
BEAM_SHAPE_TREV_DEGEN_ADD: CrossSectionType = 86
BEAM_SHAPE_Z_DEGEN: CrossSectionType = 87
BEAM_SHAPE_I_Z_DEGEN: CrossSectionType = 88
BEAM_SHAPE_L_DEGEN: CrossSectionType = 89
CHS_PAR: CrossSectionType = 101
UNIQUE_NAME: CrossSectionType = 1001

CrossSection

class viktor.external.idea_rcs.objects.CrossSection(id_, name)

Bases: _OpenElementId, ABC

Abstract base class of all cross-sections.

CrossSectionParameter

class viktor.external.idea_rcs.objects.CrossSectionParameter(id_, name, cross_section_type, material, **parameters)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_cross_section_parameter().

CrossSectionComponent

class viktor.external.idea_rcs.objects.CrossSectionComponent(id_, name)

Bases: CrossSection

Do not use this __init__ directly, but create the object by create_cross_section_component().

create_component(outline, material, *, openings=None)

Create a component to build up the cross-section.

Parameters:
  • outline (Sequence[Tuple[float, float]]) – Vertices which define the outline of the section (y, z). A minimum of 3 vertices is required, the outline is automatically closed.

  • material (MatConcrete) – Material (created by create_matconcrete_ec2()).

  • openings (Sequence[Sequence[Tuple[float, float]]]) – One or multiple openings, defined by vertices (y, z). A minimum of 3 vertices per opening is required, the opening is automatically closed.

Return type:

None

ReinforcedBar

class viktor.external.idea_rcs.objects.ReinforcedBar(coordinates, diameter, material)

Bases: _OpenObject

Do not use this __init__ directly, but create the object by ReinforcedCrossSection.create_bar().

property coordinates: Tuple[float, float]
property diameter: float
property material_id: int

Stirrup

class viktor.external.idea_rcs.objects.Stirrup(points, diameter, material, distance, shear_check=None, torsion_check=None, mandrel_diameter_factor=None, anchorage_length=None)

Bases: _OpenObject

Do not use this __init__ directly, but create the object by ReinforcedCrossSection.create_stirrup().

property points: Sequence[Tuple[float, float] | Tuple[Tuple[float, float], Tuple[float, float]]]
property material_id: int
property shear_check: bool
property torsion_check: bool
property mandrel_diameter_factor: float
property anchorage_length: float

ReinforcedCrossSection

class viktor.external.idea_rcs.objects.ReinforcedCrossSection(id_, name, cross_section, bars=None, stirrups=None)

Bases: _OpenElementId

Do not use this __init__ directly, but create the object by create_reinforced_cross_section().

property bars: List[ReinforcedBar]
property stirrups: List[Stirrup]
create_bar(coordinates, diameter, material)

Create a reinforced bar on the reinforced cross-section.

Parameters:
Return type:

None

create_bar_layer(*, origin, diameter, material, number_of_bars, delta_y=None, delta_z=None)

Create multiple reinforced bars on the reinforced cross-section, positioned on a line.

Parameters:
  • origin (Tuple[float, float]) – Origin point (Y, Z) [m].

  • diameter (float) – Diameter of the bar [m].

  • material (MatReinforcement) – Reinforcement material (created by create_matreinforcement_ec2()).

  • number_of_bars (int) – Number of bars (minimum of 2).

  • delta_y (float) – Distance between origin bar and the last bar in y-direction [m].

  • delta_z (float) – Distance between origin bar and the last bar in z-direction [m].

Return type:

None

create_stirrup(points, diameter, material, distance, shear_check=None, torsion_check=None, mandrel_diameter_factor=None, anchorage_length=None)

Create a stirrup on the reinforced cross-section.

Parameters:
  • points (Sequence[Union[Tuple[float, float], Tuple[Tuple[float, float], Tuple[float, float]]]]) – Sequence of (X, Y) coordinates [m] of the stirrup vertices, connected by straight line segments. For arc-segments use ((X_end, Y_end), (X_on_arc, Y_on_arc)).

  • diameter (float) – Diameter of the stirrup [m].

  • material (MatReinforcement) – Reinforcement material (created by create_matreinforcement_ec2()).

  • distance (float) – Longitudinal distance between stirrups [m].

  • shear_check (bool) – Take stirrup into account in shear check (default: False).

  • torsion_check (bool) – Take stirrup into account in torsion check (default: False).

  • mandrel_diameter_factor (float) – Inner diameter of mandrel as multiple of stirrup diameter [-] (default: 1.0).

  • anchorage_length (float) – Anchorage length [m] (default: 0.0).

Return type:

None

ResultOfInternalForces

class viktor.external.idea_rcs.objects.ResultOfInternalForces(N=0.0, Qy=0.0, Qz=0.0, Mx=0.0, My=0.0, Mz=0.0)

Bases: _OpenObject

Result of internal forces at a certain location.

Parameters:
  • N (float) – Normal force (default: 0.0).

  • Qy (float) – Shear force in y direction (default: 0.0).

  • Qz (float) – Shear force in z direction (default: 0.0).

  • Mx (float) – Bending moment around x-axis (default: 0.0).

  • My (float) – Bending moment around y-axis (default: 0.0).

  • Mz (float) – Bending moment around z-axis (default: 0.0).

LoadingULS

class viktor.external.idea_rcs.objects.LoadingULS(internal_forces, internal_forces_second_order=None, internal_forces_begin=None, internal_forces_end=None, internal_forces_imperfection=None)

Bases: _OpenObject

Loading ULS.

Parameters:

LoadingSLS

class viktor.external.idea_rcs.objects.LoadingSLS(internal_forces, internal_forces_imperfection=None)

Bases: _OpenObject

Loading SLS.

Parameters:

FatigueLoading

class viktor.external.idea_rcs.objects.FatigueLoading(max_loading, min_loading)

Bases: _OpenObject

Fatigue loading.

Parameters:
  • max_loading (LoadingULS) – Max. cyclic loading.

  • min_loading (LoadingULS) – Min. cyclic loading.

CheckSectionExtreme

class viktor.external.idea_rcs.objects.CheckSectionExtreme(accidental=None, fatigue=None, frequent=None, fundamental=None, characteristic=None, quasi_permanent=None, *, description)

Bases: _OpenObject

Abstract base class of all check section extremes.

StandardCheckSectionExtreme

class viktor.external.idea_rcs.objects.StandardCheckSectionExtreme(*, accidental=None, frequent=None, fundamental=None, characteristic=None, quasi_permanent=None, fatigue=None, description)

Bases: CheckSectionExtreme

Do not use this __init__ directly, but create the object by CheckSection.create_extreme().

CheckSection

class viktor.external.idea_rcs.objects.CheckSection(id_, description, check_member, reinf_section, extremes=None)

Bases: _OpenElementId, ABC

Abstract base class of all check sections.

property extremes: List[CheckSectionExtreme]
create_extreme(*, description=None, accidental=None, fatigue=None, frequent=None, fundamental=None, characteristic=None, quasi_permanent=None)

Create an extreme case with corresponding internal forces on the section for checking.

Parameters:
  • description (str) – Description of the extreme (default: ‘{section_name} - E {i}’).

    New in v14.6.0

  • accidental (LoadingULS) – Accidental loading.

  • fatigue (FatigueLoading) – Fatigue loading.

  • frequent (LoadingSLS) – Frequent loading.

  • fundamental (LoadingULS) – Fundamental loading.

  • characteristic (LoadingSLS) – Characteristic loading.

  • quasi_permanent (LoadingSLS) – Quasi-Permanent loading.

Return type:

None

StandardCheckSection

class viktor.external.idea_rcs.objects.StandardCheckSection(id_, description, check_member, reinf_section, extremes=None)

Bases: CheckSection

Do not use this __init__ directly, but create the object by add_check_section().

MemberType

class viktor.external.idea_rcs.objects.MemberType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

UNDEFINED: MemberType = 0
BEAM: MemberType = 1
COLUMN: MemberType = 2
BEAM_SLAB: MemberType = 4
HOLLOW_CORE_SLAB: MemberType = 8
TWO_WAY_SLAB: MemberType = 16
PLATE: MemberType = 32
WALL: MemberType = 64

TwoWaySlabType

class viktor.external.idea_rcs.objects.TwoWaySlabType(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

SLAB: TwoWaySlabType = 0
WALL: TwoWaySlabType = 1
DEEP_BEAM: TwoWaySlabType = 2
SHELL_AS_PLATE: TwoWaySlabType = 3
SHELL_AS_WALL: TwoWaySlabType = 4

CalculationSetup

class viktor.external.idea_rcs.objects.CalculationSetup(*, uls_response=None, uls_diagram=None, uls_shear=None, uls_torsion=None, uls_interaction=None, sls_crack=None, sls_stress_limitation=None, sls_stiffnesses=None, detailing=None, m_n_kappa_diagram=None, fatigue=None, cross_section_characteristics=None)

Bases: _OpenObject

Concrete calculation setup.

Parameters:
  • uls_response (bool) – Response N-M(-M) (default: False).

  • uls_diagram (bool) – Capacity N-M(-M) (default: True).

  • uls_shear (bool) – Shear (default: True).

  • uls_torsion (bool) – Torsion (default: True).

  • uls_interaction (bool) – Interaction (default: True).

  • sls_crack (bool) – Crack width (default: True).

  • sls_stress_limitation (bool) – Stress limitation (default: True).

  • sls_stiffnesses (bool) – Stiffnesses (default: False).

  • detailing (bool) – Detailing (default: True).

  • m_n_kappa_diagram (bool) – M-N-κ diagram (default: False).

  • fatigue (bool) – Fatigue (default: True).

  • cross_section_characteristics (bool) – Cross-section characteristics (default: IDEA-RCS default).

ConcreteMemberData

class viktor.external.idea_rcs.objects.ConcreteMemberData(element, member_type, two_way_slab_type, calculation_setup=None)

Bases: _OpenObject, ABC

Abstract base class of all concrete member data.

ExposureClassEc2Carbonation

class viktor.external.idea_rcs.objects.ExposureClassEc2Carbonation(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

XC1: ExposureClassEc2Carbonation = 1
XC2: ExposureClassEc2Carbonation = 2
XC3: ExposureClassEc2Carbonation = 3
XC4: ExposureClassEc2Carbonation = 4

ExposureClassEc2Chlorides

class viktor.external.idea_rcs.objects.ExposureClassEc2Chlorides(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

XD1: ExposureClassEc2Chlorides = 1
XD2: ExposureClassEc2Chlorides = 2
XD3: ExposureClassEc2Chlorides = 3

ExposureClassEc2ChloridesFromSea

class viktor.external.idea_rcs.objects.ExposureClassEc2ChloridesFromSea(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

XS1: ExposureClassEc2ChloridesFromSea = 1
XS2: ExposureClassEc2ChloridesFromSea = 2
XS3: ExposureClassEc2ChloridesFromSea = 3

ExposureClassEc2FreezeAttack

class viktor.external.idea_rcs.objects.ExposureClassEc2FreezeAttack(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

XF1: ExposureClassEc2FreezeAttack = 1
XF2: ExposureClassEc2FreezeAttack = 2
XF3: ExposureClassEc2FreezeAttack = 3
XF4: ExposureClassEc2FreezeAttack = 4

ExposureClassEc2ChemicalAttack

class viktor.external.idea_rcs.objects.ExposureClassEc2ChemicalAttack(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

XA1: ExposureClassEc2ChemicalAttack = 1
XA2: ExposureClassEc2ChemicalAttack = 2
XA3: ExposureClassEc2ChemicalAttack = 3

ExposureClassesDataEc2

class viktor.external.idea_rcs.objects.ExposureClassesDataEc2(*, carbonation=None, chlorides=None, chlorides_from_sea=None, freeze_attack=None, chemical_attack=None)

Bases: _OpenObject

Exposure Classes Ec2.

Parameters:

ConcreteMemberDataEc2

class viktor.external.idea_rcs.objects.ConcreteMemberDataEc2(element, member_type, two_way_slab_type, calculation_setup=None, coeff_kx_for_wmax=None, exposure_class_data=None, creep_coefficient=None, relative_humidity=None)

Bases: ConcreteMemberData

Do not use this __init__ directly, but create the object by add_member_data_ec2().